
SMT Solving for Verification
(or rather an overview of SMT and its applications)

Haniel Barbosa

ATVA 2024

Oct 21, 2024, Kyoto

Acknowledgments

Many thanks to the ATVA Program Committee for the invitation

Many thanks to local organizers for the wonderful hospitality and support

The work on proofs mentioned in the last part is funded in (large) part by AWS, DARPA, NSF, and Stanford Center
for AR. For more general information on cvc5’s funding as a whole see
https://cvc5.github.io/acknowledgements.html.

SMT Solving for Verification 1 / 67

https://cvc5.github.io/acknowledgements.html

Acknowledgments

Many thanks to Cesare Tinelli, Yoni Zohar, Andres Nötzli, Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark
Barrett, Alberto Griggio, Liana Hadarean, Dejan Jovanovic, and Albert Oliveras for contributing some of the material
used in these slides.

Disclaimer: The literature on SMT and its applications is vast. The bibliographic references provided here are just a small and highly incomplete
sample. Apologies to all authors whose work is not cited.

SMT Solving for Verification 2 / 67

Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates

SMT Solving for Verification 3 / 67

Introduction

Automated Reasoning for Formal Methods

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

Automated
reasoning

SMT Solving for Verification 4 / 67

Automated Reasoning for Formal Methods

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

Automated
reasoning

SMT Solving for Verification 4 / 67

Automated Reasoning for Formal Methods

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

SMT Solving for Verification 4 / 67

Introduction

Historically:
Automated logical reasoning achieved through uniform theorem-proving procedures for First Order Logic
(e.g., resolution, superposition, and tableaux calculi)

Limited success:
Uniform proof producedure for FOL are not always the best compromise between expressiveness and efficiency

SMT Solving for Verification 5 / 67

Introduction

Last 20+ years: R&D has focused on

▷ expressive enough decidable fragments of various logics

▷ incorporating domain-specific reasoning, e.g., on:

▶ temporal reasoning
▶ arithmetic reasoning
▶ equality reasoning
▶ reasoning about certain data structures

(arrays, lists, finite sets, . . .)

▷ combining specialized reasoners modularly

SMT Solving for Verification 6 / 67

Introduction

Two successful examples of this trend:

SAT: propositional formalization, Boolean reasoning

+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, Boolean + domain-specific reasoning

+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

This tutorial: an overview of SMT and its applications

SMT Solving for Verification 7 / 67

Introduction

Two successful examples of this trend:

SAT: propositional formalization, Boolean reasoning

+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, Boolean + domain-specific reasoning

+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

This tutorial: an overview of SMT and its applications

SMT Solving for Verification 7 / 67

Introduction

Two successful examples of this trend:

SAT: propositional formalization, Boolean reasoning

+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, Boolean + domain-specific reasoning

+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

This tutorial: an overview of SMT and its applications

SMT Solving for Verification 7 / 67

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT Solving for Verification 8 / 67

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT Solving for Verification 8 / 67

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT Solving for Verification 8 / 67

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT Solving for Verification 8 / 67

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT Solving for Verification 8 / 67

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT Solving for Verification 8 / 67

SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better

SMT Solving for Verification 9 / 67

SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better

SMT Solving for Verification 9 / 67

SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better

SMT Solving for Verification 9 / 67

The Explosion of SMT

“Satisfiability Modulo Theories” OR “SMT Solver”

SMT Solving for Verification 10 / 67

Popular SMT Solvers

Citations Google Scholar Hits
Z3 11,1161 ≈17k

CVC, CVC Lite, CVC 3, 4, cvc5 3,2362 ≈4k
Yices 1, 2 1,6183 ≈3k

MathSat 3, 4, 5 1,1534 ≈1.5k

1Moura and Bjørner 2008b, 2018 ETAPS Test of Time Award to Z3 developers
2 Barbosa et al. 2022a; Barrett et al. 2011; Barrett and Berezin 2004; Barrett and Tinelli 2007; Stump et al. 2002
3Dutertre 2014; Dutertre and Moura 2006
4Bozzano et al. 2005b; Bruttomesso et al. 2008; Cimatti et al. 2013

SMT Solving for Verification 11 / 67

Some Applications of SMT

Model Checking

(in)finite-state systems
hybrid systems
abstraction refinement
state invariant

generation
interpolation

Type Checking

dependent types
semantic subtyping
type error localization

Program Analysis

symbolic execution

program verification
verification in separation logic
(non-)termination
loop invariant generation
procedure summaries
race analysis
concurrency errors detection

Software Synthesis

syntax-guided function synthesis
automated program repair
synthesis of reactive systems
synthesis of self-stabilizing systems
network schedule synthesis

SMT Solving for Verification 12 / 67

More Applications of SMT

Security

automated exploit
generation

protocol debugging
protocol verification
analysis of access control policies
run-time monitoring

Compilers

compilation validation
optimization of arithmetic

computations

Planning

motion planning
nonlinear PDDL planning

Software Engineering

system model consistency
design analysis
test case generation
verification of ATL

transformations
semantic search for code reuse
interactive (software)

requirements prioritization
generating instances of meta-models
behavioral conformance of

web services

Machine Learning

verification of deep NNs

Business

verification of business rules
spreadsheet debugging

SMT Solving for Verification 13 / 67

More Applications of SMT

Security

automated exploit
generation

protocol debugging
protocol verification
analysis of access control policies
run-time monitoring

Compilers

compilation validation
optimization of arithmetic

computations

Planning

motion planning
nonlinear PDDL planning

Software Engineering

system model consistency
design analysis
test case generation
verification of ATL

transformations
semantic search for code reuse
interactive (software)

requirements prioritization
generating instances of meta-models
behavioral conformance of

web services

Machine Learning

verification of deep NNs

Business

verification of business rules
spreadsheet debugging

SMT Solving for Verification 13 / 67

Heavily used at AWS

A billions SMT queries a day
via Zelkovaa

aBackes et al. 2018; Rungta 2022

More Information on SMT

Handbook chapters and books Barrett et al. 2009; Barrett and Tinelli 2018; Bradley and Manna 2007;
Kroening and Strichman 2008

Online

▷ SMT-LIB at http://smt-lib.org

▷ SMT-COMP at http://smt-comp.org

▷ Satisfiability Modulo Theories: A Beginner’s Tutorial at
https://cvc5.github.io/tutorials/beginners

SMT Solving for Verification 14 / 67

http://smt-lib.org
http://smt-comp.org
https://cvc5.github.io/tutorials/beginners

SMT solver functionality

Legend

v value — i.e., distinguished variable-free term

φ[x⃗] formula with free vars from x⃗ = (x1, . . . , xn)

φ[x⃗ 7→ v⃗] formula obtained by replacing free occurrences of
variables from x⃗ in φ with corresponding values
from v⃗ = (v1, . . . , vn)

x⃗ = v⃗ x1 = v1 ∧ · · · ∧ xn = vn

z⃗ ⊆ x⃗ every element of z⃗ occurs in x⃗

M |= φ model M satisfies formula φ

φ |=T ψ formula φ entails formula ψ in theory T

SMT Solving for Verification 15 / 67

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT Solving for Verification 16 / 67

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT Solving for Verification 16 / 67

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

unsat

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT Solving for Verification 16 / 67

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

unsat

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT Solving for Verification 16 / 67

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

unsat

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT Solving for Verification 16 / 67

SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)

SMT Solving for Verification 17 / 67

SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)

SMT Solving for Verification 17 / 67

SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)

SMT Solving for Verification 17 / 67

SMT Solver Output: Sat Cores

Background theory T

SMT
Solver

φ[x⃗]

z1 = v1
...

zm = vm

sat

z⃗ = v⃗ is a sat core for φ:

1. z⃗ ⊆ x⃗

2. y⃗ = x⃗ \ z⃗
3. ∀y⃗ (φ ∧ z⃗ = v⃗) is satisfiable in T

4. z⃗ is minimal (or smallish)

SMT Solving for Verification 18 / 67

SMT Solver Output: Sat Cores

Background theory T

SMT
Solver

φ[x⃗]

z1 = v1
...

zm = vm

sat

z⃗ = v⃗ is a sat core for φ:

1. z⃗ ⊆ x⃗

2. y⃗ = x⃗ \ z⃗
3. ∀y⃗ (φ ∧ z⃗ = v⃗) is satisfiable in T

4. z⃗ is minimal (or smallish)

SMT Solving for Verification 18 / 67

SMT Solver Output: Unsat Cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:

1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T

3. {ψ1, . . . , ψm} is minimal (or smallish)

SMT Solving for Verification 19 / 67

SMT Solver Output: Unsat Cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:
1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T

3. {ψ1, . . . , ψm} is minimal (or smallish)

SMT Solving for Verification 19 / 67

SMT Solver Output: Proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:

1. π is a proof term in some formal proof system

2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker

SMT Solving for Verification 20 / 67

SMT Solver Output: Proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:
1. π is a proof term in some formal proof system

2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker

SMT Solving for Verification 20 / 67

Extended Functionality: Interpolation

Background theory T

SMT
Solver

φ1[x⃗1],
φ2[x⃗2]

ψ[x⃗]
unsat

ψ is a logical interpolant of φ1 and φ2:

1. φ1 |=T ψ and ψ |=T ¬φ2

2. x⃗ = x⃗1 ∩ x⃗2

SMT Solving for Verification 21 / 67

Extended Functionality: Interpolation

Background theory T

SMT
Solver

φ1[x⃗1],
φ2[x⃗2]

ψ[x⃗]
unsat

ψ is a logical interpolant of φ1 and φ2:

1. φ1 |=T ψ and ψ |=T ¬φ2

2. x⃗ = x⃗1 ∩ x⃗2

SMT Solving for Verification 21 / 67

Extended Functionality: Abduction

Background theory T

SMT
Solver

Γ,¬φ ψ
sat

ψ is an abduction hypothesis for φ wrt Γ:

1 Γ, ψ is satisfiable in T

2 Γ, ψ |=T φ

3 ψ is maximal, e.g., with respect to |=T
(if ψ′ satisfies 1 and 2 and ψ |=T ψ′ then ψ′ |=T ψ)

SMT Solving for Verification 22 / 67

Extended Functionality: Abduction

Background theory T

SMT
Solver

Γ,¬φ ψ
sat

ψ is an abduction hypothesis for φ wrt Γ:

1 Γ, ψ is satisfiable in T

2 Γ, ψ |=T φ

3 ψ is maximal, e.g., with respect to |=T
(if ψ′ satisfies 1 and 2 and ψ |=T ψ′ then ψ′ |=T ψ)

SMT Solving for Verification 22 / 67

Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ

SMT Solving for Verification 23 / 67

Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ

SMT Solving for Verification 23 / 67

Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ

SMT Solving for Verification 23 / 67

Extended Functionality: Optimization

Background theory T

SMT
Solver

φ[x⃗],
o = t[x⃗]

α
sat

α is a an optimal assignment for φ:

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v1, . . . , vn

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

3 α minimizes/maximizes objective o

SMT Solving for Verification 24 / 67

Extended Functionality: Optimization

Background theory T

SMT
Solver

φ[x⃗],
o = t[x⃗]

α
sat

α is a an optimal assignment for φ:

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v1, . . . , vn

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

3 α minimizes/maximizes objective o

SMT Solving for Verification 24 / 67

Background theories

Using the cvc5 SMT Solver

Choose one option from each interface

Python Interface

▷ Terminal

python3 -m venv atva-tutorial

source atva-tutorial/bin/activate

python3 -m pip install cvc5-gpl

python3

from cvc5.pythonic import *

▷ Online

▶ https://colab.research.google.com/

▶ !pip install cvc5−gpl
▶ from cvc5.pythonic import ∗

Text Interface

▷ Terminal – download, unzip, run
./<...>/bin/cvc5

▶ cvc5-Linux-arm64-static-gpl.zip
▶ cvc5-Linux-x86 64-static-gpl.zip
▶ cvc5-macOS-arm64-static-gpl.zip
▶ cvc5-macOS-x86 64-static-gpl.zip
▶ cvc5-Win64-x86 64-static.zip (incomplete, better

to use WSL)

▷ Online

▶ https://cvc5.github.io/app/

SMT Solving for Verification 25 / 67

https://colab.research.google.com/
https://github.com/cvc5/cvc5/releases/download/cvc5-1.2.0/cvc5-Linux-arm64-static-gpl.zip
https://github.com/cvc5/cvc5/releases/download/cvc5-1.2.0/cvc5-Linux-x86_64-static-gpl.zip
https://github.com/cvc5/cvc5/releases/download/cvc5-1.2.0/cvc5-macOS-arm64-static-gpl.zip
https://github.com/cvc5/cvc5/releases/download/cvc5-1.2.0/cvc5-macOS-x86_64-static-gpl.zip
https://github.com/cvc5/cvc5/releases/download/cvc5-1.2.0/cvc5-Win64-x86_64-static.zip
https://cvc5.github.io/app/

Background Theories

Uninterpreted Funs x = y ⇒ f(x) = f(y)

Integer/Real Arithmetic 2x+ y = 0 ∧ 2x− y = 4 → x = 1

Floating Point Arithmetic x+ 1 ̸= NaN ∧ x <∞ ⇒ x+ 1 > x

Bit-vectors 4 · (x≫ 2) = x&∼3

Strings and RegExs x = y · z ∧ z ∈ ab∗ ⇒ |x| > |y|
Arrays i = j ⇒ store(a, i, x)[j] = x

Algebraic Data Types x ̸= Leaf ⇒ ∃ l, r : Tree(α). ∃ a : α.
x = Node(l, a, r)

Finite Sets e1 ∈ x ∧ e2 ∈ x \ e1 ⇒ ∃y, z : Set(α).
|y| = |z| ∧ x = y ∪ z ∧ y ̸= ∅

Finite Relations (x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r ▷◁ s

SMT Solving for Verification 26 / 67

Equality and Uninterpreted Functions (EUF)(Nelson and Oppen 1980; Nieuwenhuis and Oliveras 2007)

Simplest first-order theory with equality, applications of uninterpreted functions, and variables of
uninterpreted sorts

For all sorts σ, σ′ and function symbols f : σ → σ′

Reflexivity: ∀x : σ. x = x
Symmetry: ∀x : σ. x = y ⇒ y = x
Transitivity: ∀x, y : σ. x = y ∧ y = z ⇒ x = z
Congruence: ∀x⃗, y⃗ : σ⃗. x⃗ = y⃗ ⇒ f(x⃗) = f(y⃗)

Congruence closure decision procedure can efficiently handle conjunctions of equality literals.

Example

f(f(f(a))) = b g(f(a), b) = a f(a) = a

SMT Solving for Verification 27 / 67

Arrays (Bofill et al. 2008; McCarthy 1993; Moura and Bjørner 2009; Stump et al. 2001)

Operates over sorts Array(σi, σe), σi, σe and function symbols

[] : Array(σi, σe)× σi → σe

store : Array(σi, σe)× σi × σ → Array(σi, σe)

For any index sort σi and element sort σe

Read-Over-Write-1: ∀a, i, e. store(a, i, e)[i] = e
Read-Over-Write-2: ∀a, i, j, e. i ̸= j ⇒ store(a, i, e)[j] = a[j]

Extensionality: ∀a, b, i. a ̸= b⇒ ∃i. a[i] ̸= b[i]

Efficient decision procedure based on congruence closure to handle equality reasoning and strong filters for
restricting the application of inferences capturing the above axioms.

Example

store(store(a, i, a[j]), j, a[i]) = store(store(a, j, a[i]), i, a[j])

SMT Solving for Verification 28 / 67

Arithmetic

Restricted fragments, over the reals or the integers, support efficient methods:

▷ Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =} (Bozzano et al. 2005a)

▷ Difference constraints: x− y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Cotton and Maler 2006; Nieuwenhuis and Oliveras

2005; Wang et al. 2005)

▷ UTVPI: ±x± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Lahiri and Musuvathi 2005)

▷ Linear arithmetic, e.g: 2x− 3y + 4z ≤ 5 (Bjørner and Nachmanson 2024; Dutertre and Moura 2006)

▷ Non-linear arithmetic, e.g: 2xy + 4xz2 − 5y ≤ 10 (Ábrahám et al. 2021; Borralleras et al. 2009; Jovanović and

Moura 2012; Zankl and Middeldorp 2010)

Example

Are there real solutions for x2y + yz + 2xyz + 4xy + 8xz + 16 = 0?

SMT Solving for Verification 29 / 67

Machine Arithmetic — Bit-vectors (Brummayer and Biere 2009; Niemetz and Preiner 2023)

Combines arithmetic operations, bit-wise operations, shift, extraction, concatenation.

Most effective decision procedures rely primarily on bit-blasting, i.e., converting the bit-vector problem to an
equisatisfiable Boolean representation and leveraging state-of-the-art SAT solvers.

Example

Consider the following implementations of the absolute value opeartor for 32-bit integers:

0. abs0(x) := x < 0 ? −x : x
1. abs1(x) := (x⊕ (x>>a 31))− (x>>a 31)
2. abs2(x) := (x+ (x>>a 31))⊕ (x>>a 31)
3. abs3(x) := x− ((x<< 1) & (x>>a 31))

How do we prove that all four are equivalent to one another?

SMT Solving for Verification 30 / 67

Machine Arithmetic – Floating-Points (Brain et al. 2019, 2014; Conchon et al. 2017)

FP in SMT

▷ Follows IEEE 754-2019

▷ FP number = triple of bit-vectors

▷ Wide range of operators

▶ take a rounding mode as input

▷ E.g., addition, multiplication, fused-multiplication-addition

▷ As with bit-vectors, most effective procedures rely on bit-blasting.

Example

Is addition associative in floating-point arithmetic, i.e., is a+ (b+ c) ̸= (a+ b) + c valid?

SMT Solving for Verification 31 / 67

(Co-)Algebraic Data Types (Barrett et al. 2007; Reynolds and Blanchette 2017)

Family of user-definable theories

Example

Tree := nil | node(data : Int, left : Tree, right : Tree)

Distinctiveness: ∀h, t. nil ̸= h :: t
Exhaustiveness: ∀l. l = nil ∨ ∃h, t. h :: t

Injectivity: ∀h1, h2, t1, t2.
h1 :: t1 = h2 :: t2 ⇒ h1 = h2 ∧ t1 = t2

Selectors: ∀h, t. head(h :: t) = h ∧ tail(h :: t) = t
(Non-circularity: ∀l, x1, . . . , xn. l ̸= x1 :: · · · :: xn :: l)

SMT Solving for Verification 32 / 67

Strings and regular expressions (Abdulla et al. 2015; Kiezun et al. 2009; Liang et al. 2014)

SMT Strings

▷ Represent common programming languages Unicode strings

▷ Supports a wide range of operators

▶ concatenation, length, substring, etc

▷ Regular expressions crucial for some applications, such as analysis of access control policies

Example

Can we have a string with at most three characters that also contains the string “ATVA”?

SMT Solving for Verification 33 / 67

Other Interesting Theories

▷ Finite sets with cardinality (Bansal et al. 2016)

▷ Finite relations (Meng et al. 2017)

▷ Transcendental Functions (Cimatti et al. 2017; Gao et al. 2013)

▷ Ordinary differential equations (Gao et al. 2013)

▷ Finite Fields (Hader et al. 2023; Ozdemir et al. 2023)

▷ . . .

SMT Solving for Verification 34 / 67

Some SMT solvers also allow you to axiomatize your own theory

▷ The effective procedures discussed so far generally assume quantifier-free logical fragments

▷ However new applications may not fit directly into existing theories, which necessitates reasoning about
user-defined axioms

▷ Some solvers (notably, cvc5 and Z3) support them, but this support has caveats

▶ Undecidable in general

▶ Explosive heuristics

▶ Users want it to work as well as on quantifier-free problems

Example

What if we did not have a theory of arrays but wanted to reason about them?

SMT Solving for Verification 35 / 67

The SMT Cycle

App. needs theory

Axiomatization
(Works well. . .
Until it doesn’t)

New Theory
Implementation

Theory
becomes standard

SMT Solving for Verification 36 / 67

Applications

Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates

SMT Solving for Verification 37 / 67

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT Solving for Verification 38 / 67

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT Solving for Verification 38 / 67

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT Solving for Verification 38 / 67

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT Solving for Verification 38 / 67

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT Solving for Verification 38 / 67

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT Solving for Verification 38 / 67

Bounded Model Checking

We can for example check if safety property P holds for 10 iterations.

▷ Unroll the loop 10 times or until property P is violated

▷ Check for each iteration if property P holds

C Code
int main () {

bool turn; // input
uint32_t a = 0, b = 0; // states
for (;;) {
turn = read_bool ();
assert (a != 3 || b != 3); // property P
if (turn) a = a + 1; // next(a)
else b = b + 1; // next(b)

}
}

Unroll
a0 = 0 ∧ b0 = 0
...check if P holds for a0, b0
a1 = next(a0) ∧ b1 = next(b0)
...check if P holds for a1, b1
a2 = next(a1) ∧ b2 = next(b1)
...check if P holds for a2, b2
· · ·

SMT Solving for Verification 39 / 67

Symbolic Model Checking

To check the invariance of a state property S
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula P [x⃗]

5 Prove that P [x⃗] holds in all reachable states of (I[x⃗], R[x⃗, x⃗′])

SMT Solving for Verification 40 / 67

Symbolic Model Checking

To check the invariance of a state property S
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula P [x⃗]

5 Prove that P [x⃗] holds in all reachable states of (I[x⃗], R[x⃗, x⃗′])

SMT Solving for Verification 40 / 67

Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

SMT Solving for Verification 41 / 67

Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

The transition relation contains infinitely many instances of the schema
above, one for each n0 > 0

SMT Solving for Verification 41 / 67

Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

Encoding in T = LIA

x⃗ := (c, n, r, n0)

I[x⃗] := c = 1
∧ n = n0

R[x⃗, x⃗′] := n′ = n
∧ (¬r′ ∧ c ̸= n ∨ c′ = 1)
∧ (r′ ∨ c = n ∨ c′ = c+ 1)

P [x⃗] := c ≤ n+ 1

SMT Solving for Verification 41 / 67

Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)

SMT Solving for Verification 42 / 67

Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)

SMT Solving for Verification 42 / 67

Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)

SMT Solving for Verification 42 / 67

Problem: Not all invariants are inductive

For the parametric resettable counter,
P := c ≤ n+ 1 is invariant but (2) is falsifiable
e.g., by (c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT Solving for Verification 43 / 67

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT Solving for Verification 43 / 67

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT Solving for Verification 43 / 67

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT Solving for Verification 43 / 67

Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates

SMT Solving for Verification 44 / 67

Program Synthesis

Synthesis

▷ Synthesize a function that satisfies a given high-level specification

▷ Already used extensively for hardware systems, but particularly challenging for software

▷ Recent direction: syntax-guided synthesis (SyGuS)

▶ Specification is given by (second-order) T -formula: ∃f.∀x⃗. φ[f, x⃗]
▶ Syntactic restrictions given by context-free grammar G

Invariant Synthesis via SyGuS

The SyGuS invariant problem for theory T is, given state variables x⃗, initial condition I[x⃗], transition
relation R[x⃗, x⃗′], and property P [x⃗], theory T and grammar G, to find a solution Inv such that:

▷ I[x⃗] |=T Inv[x⃗],

▷ Inv[x⃗] ∧ R[x⃗, x⃗′] |=T Inv[x⃗′]

▷ Inv[x⃗] |=T P[x⃗]

▷ Inv is generated by a context-free grammar G.

SMT Solving for Verification 45 / 67

Program Synthesis

Synthesis

▷ Synthesize a function that satisfies a given high-level specification

▷ Already used extensively for hardware systems, but particularly challenging for software

▷ Recent direction: syntax-guided synthesis (SyGuS)

▶ Specification is given by (second-order) T -formula: ∃f.∀x⃗. φ[f, x⃗]
▶ Syntactic restrictions given by context-free grammar G

Invariant Synthesis via SyGuS

The SyGuS invariant problem for theory T is, given state variables x⃗, initial condition I[x⃗], transition
relation R[x⃗, x⃗′], and property P [x⃗], theory T and grammar G, to find a solution Inv such that:

▷ I[x⃗] |=T Inv[x⃗],

▷ Inv[x⃗] ∧ R[x⃗, x⃗′] |=T Inv[x⃗′]

▷ Inv[x⃗] |=T P[x⃗]

▷ Inv is generated by a context-free grammar G.

SMT Solving for Verification 45 / 67

SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Counterexamples =

{ }

▷ De facto approach to SyGuS solving given its simplicity and efficacy

SMT Solving for Verification 46 / 67

SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Candidate
f(x,y)=x

Counterexamples =

{ }

▷ De facto approach to SyGuS solving given its simplicity and efficacy

SMT Solving for Verification 46 / 67

SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Candidate
f(x,y)=x

Counterexample
f(x=1,y=0)

Counterexamples =

{ f(1,1) = 2,

 f(1,2) = 1 }

▷ De facto approach to SyGuS solving given its simplicity and efficacy

SMT Solving for Verification 46 / 67

SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Counterexamples =

{ f(1,1) = 2,

 f(1,2) = 1 }

Examples rule out candidates
 0, 1, y, x+y, ...

▷ De facto approach to SyGuS solving given its simplicity and efficacy

SMT Solving for Verification 46 / 67

SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Candidate
f(x,y)=ite(y<1, 1+1, 1)

Counterexample
f(x=0,y=0)

Counterexamples =

{ f(1,1) = 2,

 f(1,2) = 1,

 f(0,0) = 1,

 f(0,1) = 0

 }

▷ De facto approach to SyGuS solving given its simplicity and efficacy

SMT Solving for Verification 46 / 67

SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Counterexamples =

{ f(1,1) = 2,

 f(1,2) = 1,

 f(0,0) = 1,

 f(0,1) = 0

 }

SUCCESS
Candidate

f(x,y)=

▷ De facto approach to SyGuS solving given its simplicity and efficacy

SMT Solving for Verification 46 / 67

Enumerative SyGuS in SMT (Reynolds et al. 2017, 2018)

▷ Encode problem using a deep embedding into datatypes

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Becomes

TφU = evala(d, x, x) ≃ x+ 1 ∧ evala(d, x, x+ 1) ≃ x

TRU =
a = Zero | One | X | Y | Plus(a, a) | Ite(b, a, a)
b = Leq(a, a) | Neg(b)

▷ eval maps datatype terms to their corresponding theory terms

▶ evala(Plus(X,X), 2, 3) is interpreted as (x+ x){x 7→ 2, y 7→ 3} = 4

▷ A solution is a model in which e.g.

▶ d = Ite(Leq(Y, X), Plus(X,One), X), corresponding to
▶ f = λxy. ite(y ≤ x, x+ 1, x)

SMT Solving for Verification 47 / 67

Enumerative SyGuS in SMT (Reynolds et al. 2017, 2018)

▷ Encode problem using a deep embedding into datatypes

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Becomes

TφU = evala(d, x, x) ≃ x+ 1 ∧ evala(d, x, x+ 1) ≃ x

TRU =
a = Zero | One | X | Y | Plus(a, a) | Ite(b, a, a)
b = Leq(a, a) | Neg(b)

▷ eval maps datatype terms to their corresponding theory terms

▶ evala(Plus(X,X), 2, 3) is interpreted as (x+ x){x 7→ 2, y 7→ 3} = 4

▷ A solution is a model in which e.g.

▶ d = Ite(Leq(Y, X), Plus(X,One), X), corresponding to
▶ f = λxy. ite(y ≤ x, x+ 1, x)

SMT Solving for Verification 47 / 67

Enumerative SyGuS in SMT Reynolds et al. 2017, Reynolds et al. 2018

Solution
Enumerator

Solution
Verifier

SAT
solver

Boolean Model

SyGuS
Datatypes solver

Conflict clause

Quantifier-free SMT solver

Instantiation

Instantiation
module

Model

Candidate

Counterexample

▷ An instantiation module checks candidates against the specification

▶ Generates lemmas witnessing why a candidate failed

▷ A specialized datatypes solver for SyGuS generates candidate solutions

▶ Must satisfy all lemmas
▶ Dedicated pruning
▶ Parameterizable fairness criteria for enumeration

SMT Solving for Verification 48 / 67

Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates

SMT Solving for Verification 49 / 67

Software Verification

Example

vo id swap (i n t ∗ a , i n t ∗ b) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])

SMT Solving for Verification 50 / 67

Software Verification

Example

vo id swap (i n t ∗ a , i n t ∗ b) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])

SMT Solving for Verification 50 / 67

Software Verification

Example

vo id swap (i n t ∗ a , i n t ∗ b) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])

SMT Solving for Verification 50 / 67

SMT solver solution
a 7→ 0, b 7→ 0
h0[0] 7→ 1, h1[0] 7→ 2
h2[0] 7→ 0, h3[0] 7→ 0

Contract-based Software Verification

Example (Binary Search)

//@assume 0 <= n <= | a | &&
// f o r e a c h i i n [0 . . n−2] . a [i] <= a [i +1]
// @ensure (0 <= r e s ==> a [r e s] = k) &&
// (r e s < 0 ==> f o r e a c h i i n [0 . . n−1] . a [i] != k)
i n t Bina r ySea r ch (i n t [] a , i n t n , i n t k) {

i n t l = 0 ; i n t h = n ;
whi le (l < h) { // Find midd le v a l u e

// @ i n v a r i a n t 0 <= low < h igh <= l e n <= | a | &&
// f o r e a c h i i n [0 . . low −1] . a [i]<k &&
// f o r e a c h i i n [h i gh . . l en −1] . a [i] > k
i n t m = l + (h − l) / 2 ; i n t v = a [m] ;
i f (k < v) { l = m + 1 ; } e l s e i f (v < k) { h = m; }
e l s e { re tu rn m; }

}
re tu rn −1;

}

Example adapted from Moura and Bjørner 2010

SMT Solving for Verification 51 / 67

Contract-based Software Verification

Example (Binary Search)

//@assume 0 <= n <= | a | &&
// f o r e a c h i i n [0 . . n−2] . a [i] <= a [i +1]
// @ensure (0 <= r e s ==> a [r e s] = k) &&
// (r e s < 0 ==> f o r e a c h i i n [0 . . n−1] . a [i] != k)
i n t Bina r ySea r ch (i n t [] a , i n t n , i n t k) {

i n t l = 0 ; i n t h = n ;
whi le (l < h) { // Find midd le v a l u e

// @ i n v a r i a n t 0 <= low < h igh <= l e n <= | a | &&
// f o r e a c h i i n [0 . . low −1] . a [i]<k &&
// f o r e a c h i i n [h i gh . . l en −1] . a [i] > k
i n t m = l + (h − l) / 2 ; i n t v = a [m] ;
i f (k < v) { l = m + 1 ; } e l s e i f (v < k) { h = m; }
e l s e { re tu rn m; }

}
re tu rn −1;

}

Example adapted from Moura and Bjørner 2010

SMT Solving for Verification 51 / 67

Main approach
1 Compile source and annotations to a series of pre-conditions,

commands over the state, and post-conditions.

2 Generate verification conditions on SMT

Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))

SMT Solving for Verification 52 / 67

Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))

SMT Solving for Verification 52 / 67

Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))

SMT Solving for Verification 52 / 67

SMT solver answer
Unsatisfiable

Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates

SMT Solving for Verification 53 / 67

Scheduling

Example

Schedule n jobs, each composed of m consecutive tasks, on m machines.

Schedule in 8 time slots

di,j Mach. 1 Mach. 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0) ∧ (t2,2 ≥ t2,1 + 3) ∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0) ∧ (t3,2 ≥ t3,1 + 2) ∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

Example from De Moura and Bjørner 2011

SMT Solving for Verification 54 / 67

Scheduling

Example

Schedule n jobs, each composed of m consecutive tasks, on m machines.

Schedule in 8 time slots

di,j Mach. 1 Mach. 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0) ∧ (t2,2 ≥ t2,1 + 3) ∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0) ∧ (t3,2 ≥ t3,1 + 2) ∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

Example from De Moura and Bjørner 2011

SMT Solving for Verification 54 / 67

Scheduling

Example

Schedule n jobs, each composed of m consecutive tasks, on m machines.

Schedule in 8 time slots

di,j Mach. 1 Mach. 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0) ∧ (t2,2 ≥ t2,1 + 3) ∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0) ∧ (t3,2 ≥ t3,1 + 2) ∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

Example from De Moura and Bjørner 2011

SMT Solving for Verification 54 / 67

SMT solver solution
t1,1 7→ 5, t1,2 7→ 7

t2,1 7→ 2, t2,2 7→ 6

t3,1 7→ 0, t3,2 7→ 3

Aircraft Trajectory Conflict Detection

0

20

40

60

- 20

0

20

39 000

39 500

40 000

H = 5nm V = 1000 ft 0 ≤ t ≤
1

20
h

|Tz
1 (t) − T

z
2 (t)| ≤ V

(T
x
1 (t) − T

x
2 (t))

2
+ (T

y
1 (t) − T

y
2 (t))

2 ≤ H
2

T
x
1 (t) = 3.2484 + 270.7t + 433.12t

2 − 324.83999t
3

T
y
1 (t) = 15.1592 + 108.28t + 121.2736t

2 − 649.67999t
3

T
z
1 (t) = 38980.8 + 5414t − 21656t

2
+ 32484t

3

T
x
2 (t) = 1.0828 − 135.35t + 234.9676t

2
2 + 3248.4t

3

T
y
2 (t) = 18.40759 − 230.6364t − 121.2736t

2 − 649.67999t
3

T
z
2 (t) = 40280.15999 − 10828t + 24061.9816t

2 − 32484t
3

Example from Narkawicz and Munoz 2012

SMT Solving for Verification 55 / 67

Aircraft Trajectory Conflict Detection

0

20

40

60

- 20

0

20

39 000

39 500

40 000

H = 5nm V = 1000 ft 0 ≤ t ≤
1

20
h

|Tz
1 (t) − T

z
2 (t)| ≤ V

(T
x
1 (t) − T

x
2 (t))

2
+ (T

y
1 (t) − T

y
2 (t))

2 ≤ H
2

T
x
1 (t) = 3.2484 + 270.7t + 433.12t

2 − 324.83999t
3

T
y
1 (t) = 15.1592 + 108.28t + 121.2736t

2 − 649.67999t
3

T
z
1 (t) = 38980.8 + 5414t − 21656t

2
+ 32484t

3

T
x
2 (t) = 1.0828 − 135.35t + 234.9676t

2
2 + 3248.4t

3

T
y
2 (t) = 18.40759 − 230.6364t − 121.2736t

2 − 649.67999t
3

T
z
2 (t) = 40280.15999 − 10828t + 24061.9816t

2 − 32484t
3

Example from Narkawicz and Munoz 2012

SMT Solving for Verification 55 / 67

SMT solver solution

t 7→ 319
16384 ≈ 0.019470215

Automated Compliance (Barbosa et al. 2023)

A
gr
ee
m
en
t Trusted Core

System

Model

Compliance
Controls

Compliance
Requirements

Compliance
Checker

Solver

Proof Store

Proof Rules

Proof
Checker

Query

Proof Certificate

1○ Formalization 3○ Validation2○ Checking

SMT Solving for Verification 56 / 67

Producing and checking proof certificates

SMT solvers can be hard to trust

▷ Code bases are large and complex (300K LOC in cvc5)

▷ Despite the best effort of developers, bugs remain

▷ Every year SMT-COMP has numerous disagreements between solvers

▷ Fuzzing tools often find bugs in solvers

SMT Solving for Verification 57 / 67

Why don’t we just certify/qualify the solvers?

▷ Large, complex code bases are too costly to certify

▷ A (simpler) certified system can be too slow (Fleury 2019; Fleury et al. 2018)

▷ Certifying/qualifying a system freezes it, hindering improvements

▶ Working around adding new features is slow and costly (Burdy and Déharbe 2018)

SMT Solving for Verification 58 / 67

A viable alternative: certifying solvers

▷ Produce a proof certificate for every proof

▷ A proof certificate can be checked independently of the solver

▶ Using a small trusted checker

▶ And (if done properly) fast (relative to solving time)

▷ Confidence in results is decoupled from the solver’s implementation

So why isn’t proof production commonplace in SMT?

SMT Solving for Verification 59 / 67

A viable alternative: certifying solvers

▷ Produce a proof certificate for every proof

▷ A proof certificate can be checked independently of the solver

▶ Using a small trusted checker

▶ And (if done properly) fast (relative to solving time)

▷ Confidence in results is decoupled from the solver’s implementation

So why isn’t proof production commonplace in SMT?

SMT Solving for Verification 59 / 67

Challenges for SMT proofs

▷ Collecting and storing proofs efficiently
many attempts, no panacea (Bouton et al. 2009; Hadarean et al. 2015; Katz et al. 2016; Kovács and Voronkov 2013;

Moskal 2008; Moura and Bjørner 2008a; Schulz 2013; Sutcliffe et al. 2004; Weidenbach et al. 2009)

▷ Proofs for sophisticated preprocessing and rewriting techniques
substantial initial progress but many challenges remain (Barbosa et al. 2020; Nötzli et al. 2022)

▷ Proofs for complex theory solvers (e.g., CAD, regular expressions)
open problem

▷ Standardizing a proof format
a couple of attempts, not much success

▷ Scalable, trustworthy checking
many attempts, no panacea (Barbosa et al. 2020; Blanchette et al. 2013; Ekici et al. 2017; Schurr et al. 2021; Stump

et al. 2013)

SMT Solving for Verification 60 / 67

Proofs in cvc5 (Barbosa et al. 2022b, 2023)

▷ Our goals:

▶ Minimize the impact of proof production on the solver’s behavior and performance

Incorporate (almost) all relevant optimizations
Achieve an acceptable performance overhead

▶ An internal proof checker, part of the cvc5 code base, for every proof rule

▶ Modular infrastructure allowing fine-grained error localization

▶ Allow custom eager/lazy generation of proofs

▶ Support different proof formats (and different external proof checkers)

SMT Solving for Verification 61 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷ Preprocessor simplifies formula globally: x ≃ t ∧ F [x] 7→ F [t] F [(ite P t1 t2)] 7→ F [t′] ∧ P → t′ ≃ t1 ∧ ¬P → t′ ≃ t2

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷ Preprocessor simplifies formula globally: x ≃ t ∧ F [x] 7→ F [t] F [(ite P t1 t2)] 7→ F [t′] ∧ P → t′ ≃ t1 ∧ ¬P → t′ ≃ t2

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷ Clausifier converts to Conjunctive Normal Form (CNF)
SAT solver asserts literals that must hold based on Boolean abstraction

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷ Theory solvers check consistency in the theory

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷ Theory solvers check consistency in the theory

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷ Theory solvers check consistency in the theory

SMT Solving for Verification 62 / 67

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷ Theory solvers check consistency in the theory

SMT Solving for Verification 62 / 67

Resulting proofs

▷ Preprocessing

▷ Clausification

▷ Propositional reasoning

▷ Theory reasoning
(UF, LIRA, Strings, . . .)

and
quantifier instantiation

▷ Theory combination

▷ Rewriting

SMT Solving for Verification 63 / 67

Proof certificates in various formats

Consider the following unsatisfiable SMT problem in SMT-LIB format

(set-logic QF_UF)

(declare-sort U 0)

(declare-const p1 Bool) (declare-const p2 Bool) (declare-const p3 Bool)

(declare-const a U) (declare-const b U)

(declare-fun f (U) U)

(assert (= a b))

(assert (and p1 true))

(assert (or (not p1) (and p2 p3)))

(assert (or (not p3) (not (= (f a) (f b)))))

(check-sat)

SMT Solving for Verification 64 / 67

Ongoing work

▷ Conversions to different proof formats

▶ Alethe

proof reconstruction in Isabelle/HOL via Sledgehammer

proof reconstruction in Coq via SMTCoq

proof checking in Carcara, a custom checker

▶ CPC

proof checking with Ethos, a checker parameterized by a specification of CPC in Eunoia

proof reconstruction in Lean 4 via cvc5’s proof API

▶ Dot

proof visualization

SMT Solving for Verification 65 / 67

Conclusion

▷ Fine-grained proofs and comprehensive proofs are now available for SMT problems

▶ Proofs for the strings solver in cvc5 has been a special milestone

▷ cvc5 has now a proof API and support for multiple proof formats

▷ We have designed a new and improved proof framework for SMT and built a generic checker for it

▷ Integration of cvc5 into multiple interactive theorem provers is ongoing

▶ Including the formalization of cvc5’s proof system in Eunoia, Lean, and Isabelle/HOL

▷ We expect the high-quality proofs produced by cvc5 to enable many future research directions and
applications

SMT Solving for Verification 66 / 67

Thanks!

SMT Solving for Verification 67 / 67

SMT Solving for Verification
(or rather an overview of SMT and its applications)

Haniel Barbosa

ATVA 2024

Oct 21, 2024, Kyoto

References

Abdulla, ParoshAziz et al. (2015). “Norn: An SMT Solver for String Constraints”. English. In: Computer Aided Verification. Ed. by

Daniel Kroening and Corina S. Păsăreanu. Vol. 9206. Lecture Notes in Computer Science. Springer International Publishing, pp. 462–469.

Ábrahám, Erika et al. (2021). “Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using

cylindrical algebraic coverings”. In: J. Log. Algebraic Methods Program. 119, p. 100633.

Backes, John et al. (2018). “Semantic-based Automated Reasoning for AWS Access Policies using SMT”. In:

Formal Methods In Computer-Aided Design (FMCAD). Ed. by Nikolaj Bjørner and Arie Gurfinkel. IEEE, pp. 1–9.

Bansal, Kshitij et al. (June 2016). “A New Decision Procedure for Finite Sets and Cardinality Constraints in SMT”. In:

International Joint Conference on Automated Reasoning (IJCAR). Coimbra, Portugal, to appear.

Barbosa, Haniel et al. (2020). “Scalable Fine-Grained Proofs for Formula Processing”. In: Journal of Automated Reasoning 64.3,

pp. 485–510.

Barbosa, Haniel et al. (2022a). “cvc5: A Versatile and Industrial-Strength SMT Solver”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part I. Ed. by Dana Fisman and Grigore Rosu. Vol. 13243. Lecture
Notes in Computer Science. Springer, pp. 415–442.

Barbosa, Haniel et al. (2022b). “Flexible Proof Production in an Industrial-Strength SMT Solver”. In:

International Joint Conference on Automated Reasoning (IJCAR). Ed. by Jasmin Blanchette, Laura Kovács, and Dirk Pattinson. Vol. 13385.
Lecture Notes in Computer Science. Springer, pp. 15–35.

Barbosa, Haniel et al. (2023). “Generating and Exploiting Automated Reasoning Proof Certificates”. In: Commun. ACM 66.10, pp. 86–95.

Barrett, Clark, Igor Shikanian, and Cesare Tinelli (2007). “An Abstract Decision Procedure for a Theory of Inductive Data Types”. In: JSAT

3.1-2, pp. 21–46.

References

Barrett, Clark et al. (2009). “Satisfiability Modulo Theories”. In: Handbook of Satisfiability. Ed. by Armin Biere et al. Vol. 185. Frontiers in

Artificial Intelligence and Applications. IOS Press. Chap. 26, pp. 825–885.

Barrett, Clark et al. (2011). “CVC4”. In: Computer Aided Verification (CAV). Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Springer,

pp. 171–177.

Barrett, Clark W. and Sergey Berezin (2004). “CVC Lite: A New Implementation of the Cooperating Validity Checker Category B”. In:

Computer Aided Verification (CAV). Ed. by Rajeev Alur and Doron A. Peled. Vol. 3114. Lecture Notes in Computer Science. Springer,
pp. 515–518.

Barrett, Clark W. and Cesare Tinelli (2007). “CVC3”. In: Computer Aided Verification (CAV). Ed. by Werner Damm and Holger Hermanns.

Vol. 4590. Lecture Notes in Computer Science. Springer, pp. 298–302.

— (2018). “Satisfiability Modulo Theories”. In: Handbook of Model Checking. Ed. by Edmund M. Clarke et al. Springer, pp. 305–343.

Bjørner, Nikolaj S. and Lev Nachmanson (2024). “Arithmetic Solving in Z3”. In: Computer Aided Verification (CAV), Part I. Ed. by

Arie Gurfinkel and Vijay Ganesh. Vol. 14681. Lecture Notes in Computer Science. Springer, pp. 26–41.

Blanchette, Jasmin Christian, Sascha Böhme, and Lawrence C. Paulson (2013). “Extending Sledgehammer with SMT Solvers”. In:

Journal of Automated Reasoning 51.1, pp. 109–128.

Bofill, M. et al. (2008). “A Write-Based Solver for SAT Modulo the Theory of Arrays”. In:

Formal Methods in Computer-Aided Design, FMCAD, pp. 1–8.

Borralleras, C. et al. (2009). “Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic”. In:

22nd International Conference on Automated Deduction , CADE-22. Ed. by R. A. Schmidt. Vol. 5663. Lecture Notes in Computer Science.
Springer, pp. 294–305.

References

Bouton, Thomas et al. (2009). “veriT: An Open, Trustable and Efficient SMT-Solver”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Renate A. Schmidt. Vol. 5663. Lecture Notes in Computer Science. Springer,
pp. 151–156.

Bozzano, Marco et al. (2005a). “An Incremental and Layered Procedure for the Satisfiability of Linear Arithmetic Logic”. English. In:

Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Nicolas Halbwachs and LenoreD. Zuck. Vol. 3440. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 317–333.

Bozzano, Marco et al. (2005b). “The MathSAT 3 System”. In: Proc. Conference on Automated Deduction (CADE). Ed. by

Robert Nieuwenhuis. Vol. 3632. Lecture Notes in Computer Science. Springer, pp. 315–321.

Bradley, Aaron R. and Zohar Manna (2007). The calculus of computation - decision procedures with applications to verification. Springer.

Brain, Martin, Florian Schanda, and Youcheng Sun (2019). “Building Better Bit-Blasting for Floating-Point Problems”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part I. Ed. by Tomás Vojnar and Lijun Zhang. Vol. 11427. Lecture
Notes in Computer Science. Springer, pp. 79–98.

Brain, Martin et al. (2014). “Deciding floating-point logic with abstract conflict driven clause learning”. In: Formal Methods Syst. Des. 45.2,

pp. 213–245.

Brummayer, Robert and Armin Biere (2009). “Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays”. In:

Tools and Algorithms for the Construction and Analysis of Systems: 15th International Conference, TACAS 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings.
Ed. by Stefan Kowalewski and Anna Philippou. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 174–177.

Bruttomesso, Roberto et al. (2008). “The MathSAT 4SMT Solver”. In: Computer Aided Verification (CAV). Ed. by Aarti Gupta and

Sharad Malik. Vol. 5123. Lecture Notes in Computer Science. Springer, pp. 299–303.

References

Burdy, Lilian and David Déharbe (2018). “Teaching an Old Dog New Tricks - The Drudges of the Interactive Prover in Atelier B”. In:

Abstract State Machines, Alloy, B, TLA, VDM, and Z - 6th International Conference, ABZ 2018, Southampton, UK, June 5-8, 2018, Proceedings.
Ed. by Michael J. Butler et al. Vol. 10817. Lecture Notes in Computer Science. Springer, pp. 415–419.

Cimatti, Alessandro et al. (2013). “The MathSAT5 SMT Solver”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by Nir Piterman and Scott A. Smolka. Vol. 7795. Lecture
Notes in Computer Science. Springer, pp. 93–107.

Cimatti, Alessandro et al. (2017). “Satisfiability Modulo Transcendental Functions via Incremental Linearization”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Leonardo de Moura. Vol. 10395. Lecture Notes in Computer Science. Springer,
pp. 95–113.

Conchon, Sylvain et al. (2017). “A Three-Tier Strategy for Reasoning About Floating-Point Numbers in SMT”. In:

Computer Aided Verification (CAV), Part II. Ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10427. Lecture Notes in Computer Science.
Springer, pp. 419–435.

Cotton, S. and O. Maler (2006). “Fast and Flexible Difference Constraint Propagation for DPLL(T)”. In:

9th International Conference on Theory and Applications of Satisfiability Testing, SAT’06. Ed. by A. Biere and C. P. Gomes. Vol. 4121.
Lecture Notes in Computer Science. Springer, pp. 170–183.

De Moura, Leonardo and Nikolaj Bjørner (2011). “Satisfiability modulo theories: introduction and applications”. In:

Communications of the ACM 54.9, pp. 69–77.

Dutertre, Bruno (2014). “Yices 2.2”. English. In: Computer Aided Verification (CAV). Ed. by Armin Biere and Roderick Bloem. Vol. 8559.

Lecture Notes in Computer Science. Springer International Publishing, pp. 737–744.

References

Dutertre, Bruno and Leonardo de Moura (2006). “A Fast Linear-Arithmetic Solver for DPLL(T)”. English. In:

Computer Aided Verification (CAV). Ed. by Thomas Ball and Robert B. Jones. Vol. 4144. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 81–94.

Ekici, Burak et al. (2017). “SMTCoq: A Plug-In for Integrating SMT Solvers into Coq”. In: Computer Aided Verification (CAV). Ed. by

Rupak Majumdar and Viktor Kuncak. Vol. 10427. Lecture Notes in Computer Science. Springer, pp. 126–133.

Fleury, Mathias (2019). “Optimizing a Verified SAT Solver”. In:

NASA Formal Methods - 11th International Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings. Ed. by
Julia M. Badger and Kristin Yvonne Rozier. Vol. 11460. Lecture Notes in Computer Science. Springer, pp. 148–165.

Fleury, Mathias, Jasmin Christian Blanchette, and Peter Lammich (2018). “A verified SAT solver with watched literals using imperative HOL”. In:
Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018.
Ed. by June Andronick and Amy P. Felty. ACM, pp. 158–171.

Gao, Sicun, Soonho Kong, and Edmund M Clarke (2013). “Satisfiability modulo ODEs”. In:

Formal Methods in Computer-Aided Design (FMCAD), 2013. IEEE, pp. 105–112.

Hadarean, Liana et al. (2015). “Fine Grained SMT Proofs for the Theory of Fixed-Width Bit-Vectors”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Martin Davis et al. Vol. 9450. Lecture Notes in Computer
Science. Springer, pp. 340–355.

Hader, Thomas, Daniela Kaufmann, and Laura Kovács (2023). “SMT Solving over Finite Field Arithmetic”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Ruzica Piskac and Andrei Voronkov. Vol. 94. EPiC Series in
Computing. EasyChair, pp. 238–256.

References

Jovanović, Dejan and Leonardo de Moura (2012). “Solving Non-linear Arithmetic”. English. In:

International Joint Conference on Automated Reasoning (IJCAR). Ed. by Bernhard Gramlich, Dale Miller, and Uli Sattler. Vol. 7364. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 339–354.

Katz, Guy et al. (2016). “Lazy proofs for DPLL(T)-based SMT solvers”. In: Formal Methods In Computer-Aided Design (FMCAD). Ed. by

Ruzica Piskac and Muralidhar Talupur. IEEE, pp. 93–100.

Kiezun, Adam et al. (2009). “HAMPI: a solver for string constraints”. In:

Proceedings of the eighteenth international symposium on Software testing and analysis. ACM, pp. 105–116.

Kovács, Laura and Andrei Voronkov (2013). “First-Order Theorem Proving and Vampire”. English. In: Computer Aided Verification (CAV).

Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1–35.

Kroening, Daniel and Ofer Strichman (2008). Decision Procedures - An Algorithmic Point of View. Texts in Theoretical Computer Science.

An EATCS Series. Springer.

Lahiri, Shuvendu K. and Madanlal Musuvathi (2005). “An Efficient Decision Procedure for UTVPI Constraints”. In:

5th International Workshop on Frontiers of Combining Systems, FroCos’05. Ed. by B. Gramlich. Vol. 3717. Lecture Notes in Computer
Science. Springer, pp. 168–183.

Liang, Tianyi et al. (2014). “A DPLL(T) Theory Solver for a Theory of Strings and Regular Expressions”. In:

Computer Aided Verification (CAV). Ed. by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer,
pp. 646–662.

McCarthy, John (1993). “Towards a mathematical science of computation”. In: Program Verification. Springer, pp. 35–56.

References

Meng, Baoluo et al. (2017). “Relational Constraint Solving in SMT”. In:

Proceedings of the 26th International Conference on Automated Deduction. Ed. by Leonardo de Moura. Vol. 10395. Lecture Notes in
Computer Science. Springer, pp. 148–165.

Moskal, Micha l (2008). “Rocket-Fast Proof Checking for SMT Solvers”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 486–500.

Moura, Leonardo Mendonça de and Nikolaj Bjørner (2008a). “Proofs and Refutations, and Z3”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) Workshops. Ed. by Piotr Rudnicki et al. Vol. 418. CEUR Workshop
Proceedings. CEUR-WS.org.

— (2008b). “Z3: An Efficient SMT Solver”. In: Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by

C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer Science. Springer, pp. 337–340.

— (2009). “Generalized, efficient array decision procedures”. In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, pp. 45–52.

Moura, Leonardo Mendonça de and Nikolaj S. Bjørner (2010). “Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development”.

In: International Joint Conference on Automated Reasoning (IJCAR). Ed. by Jürgen Giesl and Reiner Hähnle. Vol. 6173. Lecture Notes in
Computer Science. Springer, pp. 400–411.

Narkawicz, Anthony and César A Munoz (2012). “Formal Verification of Conflict Detection Algorithms for Arbitrary Trajectories.”. In:

Reliable Computing 17.2, pp. 209–237.

Nelson, Greg and Derek C. Oppen (1980). “Fast Decision Procedures Based on Congruence Closure”. In: J. ACM 27.2, pp. 356–364.

References

Niemetz, Aina and Mathias Preiner (2023). “Bitwuzla”. In: Computer Aided Verification (CAV), Part II. Ed. by Constantin Enea and

Akash Lal. Vol. 13965. Lecture Notes in Computer Science. Springer, pp. 3–17.

Nieuwenhuis, Robert and Albert Oliveras (July 2005). “DPLL(T) with Exhaustive Theory Propagation and its Application to Difference

Logic”. In: Proceedings of the 17th International Conference on Computer Aided Verification, CAV’05 (Edimburgh, Scotland). Ed. by
Kousha Etessami and Sriram K. Rajamani. Vol. 3576. Lecture Notes in Computer Science. Springer, pp. 321–334.

— (2007). “Fast congruence closure and extensions”. In: Information and Computation 205.4. Special Issue: 16th International Conference

on Rewriting Techniques and Applications, pp. 557 –580.

Nötzli, Andres et al. (Oct. 2022). “Reconstructing Fine-Grained Proofs of Complex Rewrites Using a Domain-Specific Language”. In:

Proceedings of the 22nd International Conference on Formal Methods In Computer-Aided Design (FMCAD ’22). Ed. by Alberto Griggio and
Neha Rungta. TU Wien Academic Press.

Ozdemir, Alex et al. (2023). “Satisfiability Modulo Finite Fields”. In: Computer Aided Verification (CAV), Part II. Ed. by Constantin Enea

and Akash Lal. Vol. 13965. Lecture Notes in Computer Science. Springer, pp. 163–186.

Reynolds, Andrew and Jasmin Christian Blanchette (2017). “A Decision Procedure for (Co)datatypes in SMT Solvers”. In:

J. Autom. Reasoning 58.3, pp. 341–362.

Reynolds, Andrew et al. (2017). “Refutation-based synthesis in SMT”. In: Formal Methods in System Design.

Reynolds, Andrew et al. (2018). “Datatypes with Shared Selectors”. In: International Joint Conference on Automated Reasoning (IJCAR).

Ed. by Didier Galmiche, Stephan Schulz, and Roberto Sebastiani. Vol. 10900. Lecture Notes in Computer Science. Springer, pp. 591–608.

Rungta, Neha (2022). “A Billion SMT Queries a Day (Invited Paper)”. In: Computer Aided Verification (CAV), Part I. Ed. by

Sharon Shoham and Yakir Vizel. Vol. 13371. Lecture Notes in Computer Science. Springer, pp. 3–18.

References

Schulz, Stephan (2013). “System Description: E 1.8”. English. In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR).

Ed. by Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 735–743.

Schurr, Hans-Jörg, Mathias Fleury, and Martin Desharnais (2021). “Reliable Reconstruction of Fine-grained Proofs in a Proof Assistant”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by André Platzer and Geoff Sutcliffe. Vol. 12699. Lecture Notes in Computer
Science. Springer, pp. 450–467.

Solar-Lezama, Armando et al. (2006). “Combinatorial sketching for finite programs”. In:

Architectural Support for Programming Languages and Operating Systems (ASPLOS). Ed. by John Paul Shen and Margaret Martonosi.
ACM, pp. 404–415.

Stump, Aaron, Clark W. Barrett, and David L. Dill (2002). “CVC: A Cooperating Validity Checker”. In: Computer Aided Verification (CAV).

Ed. by Ed Brinksma and Kim Guldstrand Larsen. Vol. 2404. Lecture Notes in Computer Science. Springer, pp. 500–504.

Stump, Aaron et al. (2001). “A Decision Procedure for an Extensional Theory of Arrays”. In: Logic In Computer Science (LICS). IEEE

Computer Society, pp. 29–37.

Stump, Aaron et al. (2013). “SMT proof checking using a logical framework”. In: Formal Methods in System Design 42.1, pp. 91–118.

Sutcliffe, Geoff, Jürgen Zimmer, and Stephan Schulz (2004). “TSTP Data-Exchange Formats for Automated Theorem Proving Tools”. In:

Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems. Ed. by Weixiong Zhang and Volker Sorge. Vol. 112. Frontiers
in Artificial Intelligence and Applications. IOS Press, pp. 201–215.

Udupa, Abhishek et al. (2013). “TRANSIT: specifying protocols with concolic snippets”. In:

Conference on Programming Language Design and Implementation (PLDI). Ed. by Hans-Juergen Boehm and Cormac Flanagan. ACM,
pp. 287–296.

References

Wang, C. et al. (2005). “Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination”. In:

12h International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’05. Ed. by G. Sutcliffe and A. Voronkov.
Vol. 3835. Lecture Notes in Computer Science. Springer, pp. 322–336.

Weidenbach, Christoph et al. (2009). “SPASS Version 3.5”. English. In: Proc. Conference on Automated Deduction (CADE). Ed. by

RenateA. Schmidt. Vol. 5663. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 140–145.

Zankl, Harald and Aart Middeldorp (2010). “Satisfiability of Non-linear (Ir)rational Arithmetic”. In:

16th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’10. Ed. by Edmund M. Clarke and
Andrei Voronkov. Vol. 6355. Lecture Notes in Computer Science. Springer, pp. 481–500.

	Introduction
	SMT solver functionality
	Background theories
	Applications
	Producing and checking proof certificates
	References

