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Introduction

Historically:
Automated logical reasoning achieved through uniform theorem-proving procedures for First Order Logic
(e.g., resolution, superposition, and tableaux calculi)

Limited success:
Uniform proof producedure for FOL are not always the best compromise between expressiveness and efficiency
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Introduction

Last 20+ years: R&D has focused on

▷ expressive enough decidable fragments of various logics

▷ incorporating domain-specific reasoning, e.g., on:

▶ temporal reasoning
▶ arithmetic reasoning
▶ equality reasoning
▶ reasoning about certain data structures

(arrays, lists, finite sets, . . . )

▷ combining specialized reasoners modularly
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Introduction

Two successful examples of this trend:

SAT: propositional formalization, Boolean reasoning

+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, Boolean + domain-specific reasoning

+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

This tutorial: an overview of SMT and its applications
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The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols
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SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better
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The Explosion of SMT

“Satisfiability Modulo Theories” OR “SMT Solver”
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Popular SMT Solvers

Citations Google Scholar Hits
Z3 11,1161 ≈17k

CVC, CVC Lite, CVC 3, 4, cvc5 3,2362 ≈4k
Yices 1, 2 1,6183 ≈3k

MathSat 3, 4, 5 1,1534 ≈1.5k

1Moura and Bjørner 2008b, 2018 ETAPS Test of Time Award to Z3 developers
2 Barbosa et al. 2022a; Barrett et al. 2011; Barrett and Berezin 2004; Barrett and Tinelli 2007; Stump et al. 2002
3Dutertre 2014; Dutertre and Moura 2006
4Bozzano et al. 2005b; Bruttomesso et al. 2008; Cimatti et al. 2013
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Some Applications of SMT

Model Checking

(in)finite-state systems
hybrid systems
abstraction refinement
state invariant

generation
interpolation

Type Checking

dependent types
semantic subtyping
type error localization

Program Analysis

symbolic execution

program verification
verification in separation logic
(non-)termination
loop invariant generation
procedure summaries
race analysis
concurrency errors detection

Software Synthesis

syntax-guided function synthesis
automated program repair
synthesis of reactive systems
synthesis of self-stabilizing systems
network schedule synthesis
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More Applications of SMT

Security

automated exploit
generation

protocol debugging
protocol verification
analysis of access control policies
run-time monitoring

Compilers

compilation validation
optimization of arithmetic

computations

Planning

motion planning
nonlinear PDDL planning

Software Engineering

system model consistency
design analysis
test case generation
verification of ATL

transformations
semantic search for code reuse
interactive (software)

requirements prioritization
generating instances of meta-models
behavioral conformance of

web services

Machine Learning

verification of deep NNs

Business

verification of business rules
spreadsheet debugging
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Heavily used at AWS

A billions SMT queries a day
via Zelkovaa

aBackes et al. 2018; Rungta 2022



More Information on SMT

Handbook chapters and books Barrett et al. 2009; Barrett and Tinelli 2018; Bradley and Manna 2007;
Kroening and Strichman 2008

Online

▷ SMT-LIB at http://smt-lib.org

▷ SMT-COMP at http://smt-comp.org

▷ Satisfiability Modulo Theories: A Beginner’s Tutorial at
https://cvc5.github.io/tutorials/beginners
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SMT solver functionality



Legend

v value — i.e., distinguished variable-free term

φ[x⃗] formula with free vars from x⃗ = (x1, . . . , xn)

φ[x⃗ 7→ v⃗] formula obtained by replacing free occurrences of
variables from x⃗ in φ with corresponding values
from v⃗ = (v1, . . . , vn)

x⃗ = v⃗ x1 = v1 ∧ · · · ∧ xn = vn

z⃗ ⊆ x⃗ every element of z⃗ occurs in x⃗

M |= φ model M satisfies formula φ

φ |=T ψ formula φ entails formula ψ in theory T
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SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness
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SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)
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SMT Solver Output: Sat Cores

Background theory T

SMT
Solver

φ[x⃗]

z1 = v1
...

zm = vm

sat

z⃗ = v⃗ is a sat core for φ:

1. z⃗ ⊆ x⃗

2. y⃗ = x⃗ \ z⃗
3. ∀y⃗ (φ ∧ z⃗ = v⃗) is satisfiable in T

4. z⃗ is minimal (or smallish)
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SMT Solver Output: Unsat Cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:

1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T

3. {ψ1, . . . , ψm} is minimal (or smallish)
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SMT Solver Output: Proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:

1. π is a proof term in some formal proof system

2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker
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Extended Functionality: Interpolation

Background theory T

SMT
Solver

φ1[x⃗1],
φ2[x⃗2]

ψ[x⃗]
unsat

ψ is a logical interpolant of φ1 and φ2:

1. φ1 |=T ψ and ψ |=T ¬φ2

2. x⃗ = x⃗1 ∩ x⃗2
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Extended Functionality: Abduction

Background theory T

SMT
Solver

Γ,¬φ ψ
sat

ψ is an abduction hypothesis for φ wrt Γ:

1 Γ, ψ is satisfiable in T

2 Γ, ψ |=T φ

3 ψ is maximal, e.g., with respect to |=T
(if ψ′ satisfies 1 and 2 and ψ |=T ψ′ then ψ′ |=T ψ)
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Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ
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Extended Functionality: Optimization

Background theory T

SMT
Solver

φ[x⃗],
o = t[x⃗]

α
sat

α is a an optimal assignment for φ:

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v1, . . . , vn

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

3 α minimizes/maximizes objective o
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Background theories



Using the cvc5 SMT Solver

Choose one option from each interface

Python Interface

▷ Terminal

python3 -m venv atva-tutorial

source atva-tutorial/bin/activate

python3 -m pip install cvc5-gpl

python3

from cvc5.pythonic import *

▷ Online

▶ https://colab.research.google.com/

▶ !pip install cvc5−gpl
▶ from cvc5.pythonic import ∗

Text Interface

▷ Terminal – download, unzip, run
./<...>/bin/cvc5

▶ cvc5-Linux-arm64-static-gpl.zip
▶ cvc5-Linux-x86 64-static-gpl.zip
▶ cvc5-macOS-arm64-static-gpl.zip
▶ cvc5-macOS-x86 64-static-gpl.zip
▶ cvc5-Win64-x86 64-static.zip (incomplete, better

to use WSL)

▷ Online

▶ https://cvc5.github.io/app/
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Background Theories

Uninterpreted Funs x = y ⇒ f(x) = f(y)

Integer/Real Arithmetic 2x+ y = 0 ∧ 2x− y = 4 → x = 1

Floating Point Arithmetic x+ 1 ̸= NaN ∧ x <∞ ⇒ x+ 1 > x

Bit-vectors 4 · (x≫ 2) = x&∼3

Strings and RegExs x = y · z ∧ z ∈ ab∗ ⇒ |x| > |y|
Arrays i = j ⇒ store(a, i, x)[j] = x

Algebraic Data Types x ̸= Leaf ⇒ ∃ l, r : Tree(α). ∃ a : α.
x = Node(l, a, r)

Finite Sets e1 ∈ x ∧ e2 ∈ x \ e1 ⇒ ∃y, z : Set(α).
|y| = |z| ∧ x = y ∪ z ∧ y ̸= ∅

Finite Relations (x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r ▷◁ s
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Equality and Uninterpreted Functions (EUF)(Nelson and Oppen 1980; Nieuwenhuis and Oliveras 2007)

Simplest first-order theory with equality, applications of uninterpreted functions, and variables of
uninterpreted sorts

For all sorts σ, σ′ and function symbols f : σ → σ′

Reflexivity: ∀x : σ. x = x
Symmetry: ∀x : σ. x = y ⇒ y = x
Transitivity: ∀x, y : σ. x = y ∧ y = z ⇒ x = z
Congruence: ∀x⃗, y⃗ : σ⃗. x⃗ = y⃗ ⇒ f(x⃗) = f(y⃗)

Congruence closure decision procedure can efficiently handle conjunctions of equality literals.

Example

f(f(f(a))) = b g(f(a), b) = a f(a) = a
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Arrays (Bofill et al. 2008; McCarthy 1993; Moura and Bjørner 2009; Stump et al. 2001)

Operates over sorts Array(σi, σe), σi, σe and function symbols

[ ] : Array(σi, σe)× σi → σe

store : Array(σi, σe)× σi × σ → Array(σi, σe)

For any index sort σi and element sort σe

Read-Over-Write-1: ∀a, i, e. store(a, i, e)[i] = e
Read-Over-Write-2: ∀a, i, j, e. i ̸= j ⇒ store(a, i, e)[j] = a[j]

Extensionality: ∀a, b, i. a ̸= b⇒ ∃i. a[i] ̸= b[i]

Efficient decision procedure based on congruence closure to handle equality reasoning and strong filters for
restricting the application of inferences capturing the above axioms.

Example

store(store(a, i, a[j]), j, a[i]) = store(store(a, j, a[i]), i, a[j])
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Arithmetic

Restricted fragments, over the reals or the integers, support efficient methods:

▷ Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =} (Bozzano et al. 2005a)

▷ Difference constraints: x− y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Cotton and Maler 2006; Nieuwenhuis and Oliveras

2005; Wang et al. 2005)

▷ UTVPI: ±x± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Lahiri and Musuvathi 2005)

▷ Linear arithmetic, e.g: 2x− 3y + 4z ≤ 5 (Bjørner and Nachmanson 2024; Dutertre and Moura 2006)

▷ Non-linear arithmetic, e.g: 2xy + 4xz2 − 5y ≤ 10 (Ábrahám et al. 2021; Borralleras et al. 2009; Jovanović and

Moura 2012; Zankl and Middeldorp 2010)

Example

Are there real solutions for x2y + yz + 2xyz + 4xy + 8xz + 16 = 0?
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Machine Arithmetic — Bit-vectors (Brummayer and Biere 2009; Niemetz and Preiner 2023)

Combines arithmetic operations, bit-wise operations, shift, extraction, concatenation.

Most effective decision procedures rely primarily on bit-blasting, i.e., converting the bit-vector problem to an
equisatisfiable Boolean representation and leveraging state-of-the-art SAT solvers.

Example

Consider the following implementations of the absolute value opeartor for 32-bit integers:

0. abs0(x) := x < 0 ? −x : x
1. abs1(x) := (x⊕ (x>>a 31))− (x>>a 31)
2. abs2(x) := (x+ (x>>a 31))⊕ (x>>a 31)
3. abs3(x) := x− ((x<< 1) & (x>>a 31))

How do we prove that all four are equivalent to one another?
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Machine Arithmetic – Floating-Points (Brain et al. 2019, 2014; Conchon et al. 2017)

FP in SMT

▷ Follows IEEE 754-2019

▷ FP number = triple of bit-vectors

▷ Wide range of operators

▶ take a rounding mode as input

▷ E.g., addition, multiplication, fused-multiplication-addition

▷ As with bit-vectors, most effective procedures rely on bit-blasting.

Example

Is addition associative in floating-point arithmetic, i.e., is a+ (b+ c) ̸= (a+ b) + c valid?
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(Co-)Algebraic Data Types (Barrett et al. 2007; Reynolds and Blanchette 2017)

Family of user-definable theories

Example

Tree := nil | node(data : Int, left : Tree, right : Tree)

Distinctiveness: ∀h, t. nil ̸= h :: t
Exhaustiveness: ∀l. l = nil ∨ ∃h, t. h :: t

Injectivity: ∀h1, h2, t1, t2.
h1 :: t1 = h2 :: t2 ⇒ h1 = h2 ∧ t1 = t2

Selectors: ∀h, t. head(h :: t) = h ∧ tail(h :: t) = t
(Non-circularity: ∀l, x1, . . . , xn. l ̸= x1 :: · · · :: xn :: l)
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Strings and regular expressions (Abdulla et al. 2015; Kiezun et al. 2009; Liang et al. 2014)

SMT Strings

▷ Represent common programming languages Unicode strings

▷ Supports a wide range of operators

▶ concatenation, length, substring, etc

▷ Regular expressions crucial for some applications, such as analysis of access control policies

Example

Can we have a string with at most three characters that also contains the string “ATVA”?
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Other Interesting Theories

▷ Finite sets with cardinality (Bansal et al. 2016)

▷ Finite relations (Meng et al. 2017)

▷ Transcendental Functions (Cimatti et al. 2017; Gao et al. 2013)

▷ Ordinary differential equations (Gao et al. 2013)

▷ Finite Fields (Hader et al. 2023; Ozdemir et al. 2023)

▷ . . .
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Some SMT solvers also allow you to axiomatize your own theory

▷ The effective procedures discussed so far generally assume quantifier-free logical fragments

▷ However new applications may not fit directly into existing theories, which necessitates reasoning about
user-defined axioms

▷ Some solvers (notably, cvc5 and Z3) support them, but this support has caveats

▶ Undecidable in general

▶ Explosive heuristics

▶ Users want it to work as well as on quantifier-free problems

Example

What if we did not have a theory of arrays but wanted to reason about them?
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The SMT Cycle

App. needs theory

Axiomatization
(Works well. . .
Until it doesn’t)

New Theory
Implementation

Theory
becomes standard
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Applications



Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates
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Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T
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Bounded Model Checking

We can for example check if safety property P holds for 10 iterations.

▷ Unroll the loop 10 times or until property P is violated

▷ Check for each iteration if property P holds

C Code
int main () {

bool turn; // input
uint32_t a = 0, b = 0; // states
for (;;) {
turn = read_bool ();
assert (a != 3 || b != 3); // property P
if (turn) a = a + 1; // next(a)
else b = b + 1; // next(b)

}
}

Unroll
a0 = 0 ∧ b0 = 0
...check if P holds for a0, b0
a1 = next(a0) ∧ b1 = next(b0)
...check if P holds for a1, b1
a2 = next(a1) ∧ b2 = next(b1)
...check if P holds for a2, b2
· · ·
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Symbolic Model Checking

To check the invariance of a state property S
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula P [x⃗]

5 Prove that P [x⃗] holds in all reachable states of (I[x⃗], R[x⃗, x⃗′])
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Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1
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System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

The transition relation contains infinitely many instances of the schema
above, one for each n0 > 0
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Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

Encoding in T = LIA

x⃗ := (c, n, r, n0)

I[x⃗] := c = 1
∧ n = n0

R[x⃗, x⃗′] := n′ = n
∧ (¬r′ ∧ c ̸= n ∨ c′ = 1)
∧ (r′ ∨ c = n ∨ c′ = c+ 1)

P [x⃗] := c ≤ n+ 1
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Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)
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Problem: Not all invariants are inductive

For the parametric resettable counter,
P := c ≤ n+ 1 is invariant but (2) is falsifiable
e.g., by (c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)



Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)
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Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates
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Program Synthesis

Synthesis

▷ Synthesize a function that satisfies a given high-level specification

▷ Already used extensively for hardware systems, but particularly challenging for software

▷ Recent direction: syntax-guided synthesis (SyGuS)

▶ Specification is given by (second-order) T -formula: ∃f.∀x⃗. φ[f, x⃗]
▶ Syntactic restrictions given by context-free grammar G

Invariant Synthesis via SyGuS

The SyGuS invariant problem for theory T is, given state variables x⃗, initial condition I[x⃗], transition
relation R[x⃗, x⃗′], and property P [x⃗], theory T and grammar G, to find a solution Inv such that:

▷ I[x⃗] |=T Inv[x⃗],

▷ Inv[x⃗] ∧ R[x⃗, x⃗′] |=T Inv[x⃗′]

▷ Inv[x⃗] |=T P[x⃗]

▷ Inv is generated by a context-free grammar G.
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SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Counterexamples =

{  }

▷ De facto approach to SyGuS solving given its simplicity and efficacy
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Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Candidate
f(x,y)=x

Counterexample
f(x=1,y=0)

Counterexamples =

{ f(1,1) = 2,

   f(1,2) = 1 }

▷ De facto approach to SyGuS solving given its simplicity and efficacy
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SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Counterexamples =

{ f(1,1) = 2,

   f(1,2) = 1 }

Examples rule out candidates 
            0, 1, y, x+y, ...

▷ De facto approach to SyGuS solving given its simplicity and efficacy
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SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Candidate
f(x,y)=ite(y<1, 1+1, 1)

Counterexample
f(x=0,y=0)

Counterexamples =

{ f(1,1) = 2,

   f(1,2) = 1,

   f(0,0) = 1,

   f(0,1) = 0

 }

▷ De facto approach to SyGuS solving given its simplicity and efficacy
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SyGuS solving: enumerative CEGIS Solar-Lezama et al. 2006; Udupa et al. 2013

Consider the example:

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Counterexamples =

{ f(1,1) = 2,

   f(1,2) = 1,

   f(0,0) = 1,

   f(0,1) = 0

 }

SUCCESS
Candidate

f(x,y)=                      

▷ De facto approach to SyGuS solving given its simplicity and efficacy
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Enumerative SyGuS in SMT (Reynolds et al. 2017, 2018)

▷ Encode problem using a deep embedding into datatypes

φ = f(x, x) ≃ x+ 1 ∧ f(x, x+ 1) ≃ x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Becomes

TφU = evala(d, x, x) ≃ x+ 1 ∧ evala(d, x, x+ 1) ≃ x

TRU =
a = Zero | One | X | Y | Plus(a, a) | Ite(b, a, a)
b = Leq(a, a) | Neg(b)

▷ eval maps datatype terms to their corresponding theory terms

▶ evala(Plus(X,X), 2, 3) is interpreted as (x+ x){x 7→ 2, y 7→ 3} = 4

▷ A solution is a model in which e.g.

▶ d = Ite(Leq(Y, X), Plus(X,One), X), corresponding to
▶ f = λxy. ite(y ≤ x, x+ 1, x)
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Enumerative SyGuS in SMT Reynolds et al. 2017, Reynolds et al. 2018

Solution
Enumerator

Solution
Verifier

SAT
solver

Boolean Model

SyGuS 
Datatypes solver

Conflict clause

Quantifier-free SMT solver

Instantiation

Instantiation
module

Model

Candidate

Counterexample

▷ An instantiation module checks candidates against the specification

▶ Generates lemmas witnessing why a candidate failed

▷ A specialized datatypes solver for SyGuS generates candidate solutions

▶ Must satisfy all lemmas
▶ Dedicated pruning
▶ Parameterizable fairness criteria for enumeration
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Software Verification

Example

vo id swap ( i n t ∗ a , i n t ∗ b ) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])
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SMT solver solution
a 7→ 0, b 7→ 0
h0[0] 7→ 1, h1[0] 7→ 2
h2[0] 7→ 0, h3[0] 7→ 0



Contract-based Software Verification

Example (Binary Search)

//@assume 0 <= n <= | a | &&
// f o r e a c h i i n [ 0 . . n−2] . a [ i ] <= a [ i +1]
// @ensure (0 <= r e s ==> a [ r e s ] = k ) &&
// ( r e s < 0 ==> f o r e a c h i i n [ 0 . . n−1] . a [ i ] != k )
i n t Bina r ySea r ch ( i n t [ ] a , i n t n , i n t k ) {

i n t l = 0 ; i n t h = n ;
whi le ( l < h ) { // Find midd le v a l u e

// @ i n v a r i a n t 0 <= low < h igh <= l e n <= | a | &&
// f o r e a c h i i n [ 0 . . low −1] . a [ i ]<k &&
// f o r e a c h i i n [ h i gh . . l en −1] . a [ i ] > k
i n t m = l + (h − l ) / 2 ; i n t v = a [m] ;
i f ( k < v ) { l = m + 1 ; } e l s e i f ( v < k ) { h = m; }
e l s e { re tu rn m; }

}
re tu rn −1;

}

Example adapted from Moura and Bjørner 2010
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Main approach
1 Compile source and annotations to a series of pre-conditions,

commands over the state, and post-conditions.

2 Generate verification conditions on SMT



Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))
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SMT solver answer
Unsatisfiable



Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Applications
Model Checking
Synthesis
Software Verification
Misc

5 Producing and checking proof certificates
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Scheduling

Example

Schedule n jobs, each composed of m consecutive tasks, on m machines.

Schedule in 8 time slots

di,j Mach. 1 Mach. 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0) ∧ (t2,2 ≥ t2,1 + 3) ∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0) ∧ (t3,2 ≥ t3,1 + 2) ∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

Example from De Moura and Bjørner 2011
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SMT solver solution
t1,1 7→ 5, t1,2 7→ 7

t2,1 7→ 2, t2,2 7→ 6

t3,1 7→ 0, t3,2 7→ 3



Aircraft Trajectory Conflict Detection
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SMT solver solution

t 7→ 319
16384 ≈ 0.019470215



Automated Compliance (Barbosa et al. 2023)

A
gr
ee
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en
t Trusted Core

System

Model

Compliance
Controls

Compliance
Requirements

Compliance
Checker

Solver

Proof Store

Proof Rules

Proof
Checker

Query

Proof Certificate

1○ Formalization 3○ Validation2○ Checking
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Producing and checking proof certificates



SMT solvers can be hard to trust

▷ Code bases are large and complex (300K LOC in cvc5)

▷ Despite the best effort of developers, bugs remain

▷ Every year SMT-COMP has numerous disagreements between solvers

▷ Fuzzing tools often find bugs in solvers
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Why don’t we just certify/qualify the solvers?

▷ Large, complex code bases are too costly to certify

▷ A (simpler) certified system can be too slow (Fleury 2019; Fleury et al. 2018)

▷ Certifying/qualifying a system freezes it, hindering improvements

▶ Working around adding new features is slow and costly (Burdy and Déharbe 2018)
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A viable alternative: certifying solvers

▷ Produce a proof certificate for every proof

▷ A proof certificate can be checked independently of the solver

▶ Using a small trusted checker

▶ And (if done properly) fast (relative to solving time)

▷ Confidence in results is decoupled from the solver’s implementation

So why isn’t proof production commonplace in SMT?
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Challenges for SMT proofs

▷ Collecting and storing proofs efficiently
many attempts, no panacea (Bouton et al. 2009; Hadarean et al. 2015; Katz et al. 2016; Kovács and Voronkov 2013;

Moskal 2008; Moura and Bjørner 2008a; Schulz 2013; Sutcliffe et al. 2004; Weidenbach et al. 2009)

▷ Proofs for sophisticated preprocessing and rewriting techniques
substantial initial progress but many challenges remain (Barbosa et al. 2020; Nötzli et al. 2022)

▷ Proofs for complex theory solvers (e.g., CAD, regular expressions)
open problem

▷ Standardizing a proof format
a couple of attempts, not much success

▷ Scalable, trustworthy checking
many attempts, no panacea (Barbosa et al. 2020; Blanchette et al. 2013; Ekici et al. 2017; Schurr et al. 2021; Stump

et al. 2013)
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Proofs in cvc5 (Barbosa et al. 2022b, 2023)

▷ Our goals:

▶ Minimize the impact of proof production on the solver’s behavior and performance

Incorporate (almost) all relevant optimizations
Achieve an acceptable performance overhead

▶ An internal proof checker, part of the cvc5 code base, for every proof rule

▶ Modular infrastructure allowing fine-grained error localization

▶ Allow custom eager/lazy generation of proofs

▶ Support different proof formats (and different external proof checkers)
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Proof module architecture for CDCL(T )

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ→ ⊥⊥

sat

P : φ→ ϕ1 . . . P : φ→ ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗→ ⊥

▷
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▷ Clausifier converts to Conjunctive Normal Form (CNF)
SAT solver asserts literals that must hold based on Boolean abstraction
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Resulting proofs

▷ Preprocessing

▷ Clausification

▷ Propositional reasoning

▷ Theory reasoning
(UF, LIRA, Strings, . . . )

and
quantifier instantiation

▷ Theory combination

▷ Rewriting
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Proof certificates in various formats

Consider the following unsatisfiable SMT problem in SMT-LIB format

(set-logic QF_UF)

(declare-sort U 0)

(declare-const p1 Bool) (declare-const p2 Bool) (declare-const p3 Bool)

(declare-const a U) (declare-const b U)

(declare-fun f (U) U)

(assert (= a b))

(assert (and p1 true))

(assert (or (not p1) (and p2 p3)))

(assert (or (not p3) (not (= (f a) (f b)))))

(check-sat)
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Ongoing work

▷ Conversions to different proof formats

▶ Alethe

proof reconstruction in Isabelle/HOL via Sledgehammer

proof reconstruction in Coq via SMTCoq

proof checking in Carcara, a custom checker

▶ CPC

proof checking with Ethos, a checker parameterized by a specification of CPC in Eunoia

proof reconstruction in Lean 4 via cvc5’s proof API

▶ Dot

proof visualization
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Conclusion

▷ Fine-grained proofs and comprehensive proofs are now available for SMT problems

▶ Proofs for the strings solver in cvc5 has been a special milestone

▷ cvc5 has now a proof API and support for multiple proof formats

▷ We have designed a new and improved proof framework for SMT and built a generic checker for it

▷ Integration of cvc5 into multiple interactive theorem provers is ongoing

▶ Including the formalization of cvc5’s proof system in Eunoia, Lean, and Isabelle/HOL

▷ We expect the high-quality proofs produced by cvc5 to enable many future research directions and
applications
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Thanks!
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