Congruence Closure with Free Variables:
A quantifier-instantiation framework for SMT

Haniel Barbosa

UFM"MG

f 4 UFMG | ICEx _—

N DEPARTAMENTO DE
CIENCIA DA COMPUTACAO

SRI Formal Topics Seminar
2020-07-16, The Internet

Overview

> Instantiation in SMT

> Congruence closure with free variables
» E-ground (dis)unification
» Casting instantiations techniques
» Decision procedure
» Implementation
» Evaluation

> Issues and extensions
» WIP towards HOSMT

CCFV: A quantifier-instantiation framework for SMT 1/20

CDCL(T) architecture

SMT formula

Formula processing

Quantifier-free SMT solver

Theo: ,—|
Geaean v

SMT solver

(SAT (model)) (UNSAT (proof/core))

Quantifier-free solver enumerates models F
> E is a set of ground literals {a<b,b<a+z,x~0, f(a) 2 f(b)}

CCFV: A quantifier-instantiation framework for SMT 2 /20

CDCL(T) architecture

SMT formula

Formula processing

SMT solver
Quantifier-free SMT solver
Instantiation
module SAT solver
o | e

(SAT (model)) (UNSAT (proof/core))

Quantifier-free solver enumerates models £ U Q
{a<bb<a+z x>0, f(a)# f(b)}

{Vayz. f(x) £ f(2) V g(y) ~ h(2)}

> F is a set of ground literals

> Q is a set of quantified clauses

f(a) % f(b) V g(a) ~ h(b)

Instantiation module generates instances of QO
2/20

CCFV: A quantifier-instantiation framework for SMT

Instantiation techniques

> Enumerative
[RBF18]

> Trigger-based
[DNS05; MB07]

> Conflict-based
[RTM14; BFR17]

> Model-based
[GM09; RTG+13]

@ Easy to implement

@ Reliable last resort

@ General: V+EUF+...

© Finding instantiations is
hard

CCFV: A quantifier-instantiation framework for SMT

> QE-based [Mon10; Bjg10;
RDK+15; BJ15]

@ Decision procedures available

© Pure fragments

3/20

Instantiation techniques

> Trigger-based > Enumerative > QE-based [Mon10; Bjg10;
[DNS05; MBO07] [RBF18] RDK-+15; BJ15]
> Conflict-based @ Easy to implement & Decision procedures available
[RTM14; BFR17]
@ Reliable last resort ~ © Pure fragments

> Model-based
[GM09; RTG+13]

General: V4+EUF+...

D D

Finding instantiations is
hard

(
L

CCFV is a unifying framework for

trigger-, conflict-, and model-based instantiation

CCFV: A quantifier-instantiation framework for SMT

3/20

A bit of history

Dec. 2013: “Make veriT great on quantifiers.

Probably try superposition.”

After much suffering acting like a resolution prover...

"“A resolution prover is like a prolific but not very well organized
mathematician filling notebooks with trivial deductions, with no overall
sense of where he is going. Once in a while he stumbles on something
interesting.” - David A. Plaisted [Pla15]

CCFV: A quantifier-instantiation framework for SMT 4/20

A bit of history

Dec. 2013: “Make veriT great on quantifiers.

Probably try superposition.”

Conflict-based instantiation [RTM14]
> Given theory T', a model F U Q, for some VZ. ¢ € Q find o s.t.
ENYo E=r L

> Add instance VZ. v — 1o to quantifier-free solver

Finding conflicting instances requires deriving o s.t. E =1 —t¢o

@ Goal-oriented instantiation technique
@ Efficient

© Specialized solution

© Incomplete matching

CCFV: A quantifier-instantiation framework for SMT 4/20

Let's look deeper into the problem (with 7" = EUF)

E = =)o, for some Vz. ¢ € Q

CCFV: A quantifier-instantiation framework for SMT 5/20

Let's look deeper into the problem (with 7" = EUF)

E = =)o, for some Vz. ¢ € Q

E={f(a) = [(c), g(b) £ h(e)}, @ = {Vayz. f(x) # f(2) V g(y) = h(z)}

CCFV: A quantifier-instantiation framework for SMT 5/20

Let's look deeper into the problem (with 7" = EUF)
E = o, for some Vz. ¢ € Q

E = {f(a) =~ f(c), g(b) # h(c)}, @ = {Vayz. f(x) # f(2) V g(y) ~ h(2)}
~ f(c) Ag(b) # hlc) = (f(z) = f(2) Ng(y) # h(z)) o

CCFV: A quantifier-instantiation framework for SMT 5/ 20

Let's look deeper into the problem (with 7" = EUF)

E = =)o, for some Vz. ¢ € Q
E ={f(a) ~
f(a)

> Each literal in the right hand side delimits possible o

7(), g(b) # h(e)}, © = {Vayz. f(z) # F(2) V gly) ~ h(=)}
~ f(e) A g(b) £ h(e) | (f(2) = (=) A gly) £ h(z)) o

CCFV: A quantifier-instantiation framework for SMT 5/ 20

Let's look deeper into the problem (with 7" = EUF)

E = =)o, for some Vz. ¢ € Q

E={f(a) = f(c), g(b) # h(e)}, @ = {Vayz. f(x) # f(2) V g(y) = h(z)}
fla) = f(e) Ag(b) £ hic) = (f(x) = f(2) Ng(y) # h(z)) o

> Each literal in the right hand side delimits possible o
> f(z)~ f(2): eithera~zorz~aAz~corz~cAz~a

CCFV: A quantifier-instantiation framework for SMT 5/ 20

Let's look deeper into the problem (with 7" = EUF)

E = o, for some Vz. ¢ € Q
E={f(a) > f(c), g(b) #£ h(c)}, @ = {Vayz. f(z) # f(2) Vg(y) =~ h(2)}
fla) = f(e) Ng(b) # h(c) | (f(z) = f(2) Agly) # h(z)) o

> Each literal in the right hand side delimits possible o
> f(z)~ f(2): eithera~zorz~aAz~corz~cAz~a

g(y) £ h(z): y=bAz>=c

CCFV: A quantifier-instantiation framework for SMT 5/ 20

Let's look deeper into the problem (with 7" = EUF)

E = o, for some Vz. ¢ € Q
E={f(a) > f(c), g(b) #£ h(c)}, @ = {Vayz. f(z) # f(2) Vg(y) =~ h(2)}
fla) = f(e) Ng(b) # h(c) | (f(z) = f(2) Agly) # h(z)) o

> Each literal in the right hand side delimits possible o
> f(z)~ f(2): eithera~zorz~aAz~corz~cAz~a

9(y) #h(): y=bhz=c

c={x—c,y—b, z—c}

CCFV: A quantifier-instantiation framework for SMT 5/ 20

Let's look deeper into the problem (with 7" = EUF)

E = =)o, for some Vz. ¢ € Q

E={f(a) =~ f(c), g(b) £ h(c)}, Q@ ={Vayz. f(z) % f(2) Vg(y) = h(2)}
fla) = f(c) Ag(b) 2 h(c) = (f(x) = f(2) Ag(y) £ h(2)) o

> Each literal in the right hand side delimits possible o
> f(x) >~ f(2): eitherx~zorzg~aAz~corz~cAz~a

9(y) £h(2): y=brz=c
oc={r—cy—b z—c}
or

c={x—a,y—b, z—c}

CCFV: A quantifier-instantiation framework for SMT 5/ 20

Let's look deeper into the problem (with 7" = EUF)

E = =)o, for some Vz. ¢ € Q

E={f(a) = f(c), g(b) # h(e)}, @ = {Vayz. f(x) # f(2) V g(y) = h(z)}
fla) = f(e) Ag(b) £ hic) = (f(x) = f(2) Ng(y) # h(z)) o

> Each literal in the right hand side delimits possible o
> f(x)~ f(2): eitherx~zorx~aANz~corz~cAhz~a

9y) £ h(z): y=bhz=c
oc={r—cy—b z—c}
or

c={x—a,y—b, z—c}

CCFV: A quantifier-instantiation framework for SMT 5/ 20

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with F ground,
finding a substitution o s.t. E = Lo

> Solution space can be restricted into ground terms from E U L

> NP-complete

» NP: solutions can checked in polynomial time
» NP-hard: reduction of 3-SAT into the entailment

> Variant of classic (non-simultaneous) rigid E-unification

$10 ~t10, ..., $Spo ~ t,0 = uo ~ vo

CCFV: A quantifier-instantiation framework for SMT 6 /20

Casting instantiation techniques: Trigger-based

EE(umxyi A Aty 2 ym)o
where {u1,...,uy,} is a trigger for VZ. 1) € Q and each y;0 € T(E)

> Consider

> E={f(a) ~g(b), h(a) =0, fa) = f(c)}
> Q= {va. f(z)# g(h(x))}, Trigger={f(2)}

> Solving E |= (f(z) ~ y)o yields

» o1 ={y— fla), z+— a}
> o2 ={y+ f(c), x> c}

> The instantiation lemmas are:

> Va. f(x) # g(h(z)) = f(a) # g(h(a))
> V. f(x) %2 g(h(z)) = f(c) # g(h(c))

CCFV: A quantifier-instantiation framework for SMT 7/ 20

Casting instantiation techniques: Conflict-based

E = —o, for some Vz. 1) € Q

> Consider

> E={f(a) ~g(b), h(a) ~b, f(a) ~ f(c)}
> Q= {Vz. f(x) # g(h(z))

> Solving E = (f(x) ~ g(h(x)))o yields
> o={x—a}

> The instantiation lemma is:

> Va. f(z) # g(h(x)) — f(a) # g(h(a))

CCFV: A quantifier-instantiation framework for SMT

8 /20

Casting instantiation techniques: Model-based

ETOT): _\’LﬂU, fOr some V.f'. /(/} G Q

where Eror is a total extension of E s.t.:
» ground terms not in E necessary for evaluating () are added

» all terms in T(E) not asserted equal are made disequal

> Consider
> E={f(a) ~g(b), h(a)~ b}
> O ={Vx. f(z) # g(x), YVay. ¢}, e = a as a default value, and

Eior =EU {a;éb,a;ﬁf(a),b;:éf(a)}
U {f(b) ~ f(a), f(f(a)) =~ f(a), g(a) >~ a,g(f(a)) = a} U{...

> Solving {..., f(a) = g(b), f(b) =~ f(a),...} E f(x) =~ g(x)o yields
> o={x+— b}
> The lemma Vz. f(z) # g(x) — f(a) % g(a) prevents the same Eror

CCFV: A quantifier-instantiation framework for SMT 9 /20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

> EE(zr~y)o
» ro = yo or
» some ty, ty S.t. xO € [tl}, Yo € [tQ], and [tl] = [tQ]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

> EE(zr~y)o
» ro = yo or
» some ty, ty S.t. xO € [tl}, Yo € [tQ], and [tl] = [tQ]

> FEE=(z~f(s1,...,8:))0, ® occurs in f(s1,...,8n),
» some iy, to € T(E) s.t. xo € [tl], f(Sl,. . .,Sn)O' S [tg}, and [tl] = [tg]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

> EE(zr~y)o
» ro = yo or
> some ty, tg s.t. xo € [t1], yo € [t2], and [t1] = [t2]

> FEE=(z~f(s1,...,8:))0, ® occurs in f(s1,...,8n),
» some iy, to € T(E) s.t. xo € [tl], f(Sl,. .. ,Sn)O' S [tg}, and [tl] = [tg]

> FE = (z~ f(s1,...,82))0, x does not occur in f(s1,...,8») and
» x0 = f(s1,...,8n)0 Or
» some tq, tg s.t. xo € [tl}, f(Sl, .. .7Sn)0' S [tg], and [tl] = [tz]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:
> EE(zr~y)o

» ro = yo or

> some ty, tg s.t. xo € [t1], yo € [t2], and [t1] = [t2]
> FEE=(z~f(s1,...,8:))0, ® occurs in f(s1,...,8n),

> some ty, ty € T(E) s.t. zo € [t1], f(s1,...,8n)0 € [t2], and [t1] = [t2]
> FE = (z~ f(s1,...,82))0, x does not occur in f(s1,...,8») and

» x0 = f(s1,...,8n)0 Or

» some tq, tg s.t. xo € [tl}, f(Sl, .. .7Sn)0' S [tg], and [tl] = [tz]
> E = (f(ul,...,un) ~ g(vi,...,vn))o and

» f=gand E = ujo~vo,..., EEu,0>~v,0 or

> some ty, ts € T(E) s.t. [t1] = [to], f(u1,...,us)o € [t1], and

g(vla s ,U»,L)O' S [tQ]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

> EE(zr~y)o
» ro = yo or
> some ty, tg s.t. xo € [t1], yo € [t2], and [t1] = [t2]

> FEE=(z~f(s1,...,8:))0, ® occurs in f(s1,...,8n),

> some ty, ty € T(E) s.t. zo € [t1], f(s1,...,8,)0 € [ta], and [t1] = [to]

> FE = (z~ f(s1,...,82))0, x does not occur in f(s1,...,8») and

» x0 = f(s1,...,8n)0 Or

» some tq, tg s.t. xo € [tl}, f(Sl, .. .7Sn)0' S [tg], and [tl] = [tz]
> E = (f(ul,...,un) ~ g(vi,...,vn))o and

» f=gand E = ujo~vo,..., EEu,0>~v,0 or

> some ty, ts € T(E) s.t. [t1] = [to], f(u1,...,us)o € [t1], and

g(v1,...,0n)0 € [ta]

> EE(u#v)o

> some ty, ty € T(E) s.t. B |t #tse, uo € [t1], and vo € [ts]

CCFV: A quantifier-instantiation framework for SMT

10 / 20

Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and
terminating calculus for solving E-ground (dis)unification

@ (allows for) Goal-oriented instantiation technique

@ Efficient

© Ad-hee Versatile framework, recasting many instantiation
techniques as a CCFV problem

© tneemptete Finds all conflicting instances of a quantified formula

CCFV: A quantifier-instantiation framework for SMT 11 /20

Finding solutions o for E = Lo

E E Lo
fla) = fe) ng(b) £ h(c) = (fz)=[(2) Ngly) #h(z))o

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Finding solutions o for E = Lo

E E Lo
fla) = fe) ng(b) £ h(c) = (fz)=[(2) Ngly) #h(z))o

f(x) = f(z) Ng(y) # h(z)

CCFV: A quantifier-instantiation framework for SMT 12 /20

Finding solutions o for E = Lo

E E Lo

fla) = fe) ng(b) £ h(c) = (fz)=[(2) Ngly) #h(z))o

Jlr) = [(2) Ng(y) # h(z)

%)

J@) = f()Az=cAy=b

CCFV: A quantifier-instantiation framework for SMT

12 /20

Finding solutions o for E = Lo

E E Lo
fla) = fe) ng(b) £ h(c) = (fz)=[(2) Ngly) #h(z))o

fla) = f(z) Ag(y) # h(2)
d

flo)= flz)Nz=cAhy~b

CCFV: A quantifier-instantiation framework for SMT 12 /20

Finding solutions o for E = Lo

E E Lo

fla) = fe) ng(b) £ h(c) = (fz)=[(2) Ngly) #h(z))o

CCFV: A quantifier-instantiation framework for SMT

12 /20

Finding solutions o for E = Lo

E E Lo
fla) = fe) ng(b) £ h(c) = (fz)=[(2) Ngly) #h(z))o

CCFV: A quantifier-instantiation framework for SMT 12 /20

Finding solutions o for E = Lo

E E Lo
fla) = fe) ng(b) £ h(c) = (fz)=[(2) Ngly) #h(z))o

o
f(x)~= f(z)Nz=cAy=b
y~b
fle)~ f(z)Nz~c
y~b z~c

f(@) = f(e)
Tr>~a r~=c
r~a,y~b z~c ‘zzcyzb z o~
T T

CCFV: A quantifier-instantiation framework for SMT

12 /20

Implementation

SMT solver
Quantifier-free SMT solver

> Model minimization Inetantiation
» Relevancy module "

L N T
» Prime implicant
(ModelD)

> Top symbol indexing of E-graph from ground congruence closure

f([tl]a ey [tn])
S 1)

f—

> E = f(x)o ~t only if [t] contains some f(t')
E E f(x)o ~ g(y)o only if some [t] contains some f(t') and some g(t”)

m Bitmasks for fast checking if symbol has applications in congruence class

> Mapping from congruence class to classes it's disequal to

CCFV: A quantifier-instantiation framework for SMT 13 /20

Implementation

> Selection strategies

EE f(z,y) ~h(z) A ~tA...

> Eagerly checking whether constraints can be discarded
» After assigning x to t, the remaining problem is normalized

EE f(t,y) ~h(z)A...
> EE f(t,y)o = h(2)o only if there is some f(t',t") s.t.

EEt~t

CCFV: A quantifier-instantiation framework for SMT 14 /20

Implementation

A breadth-first implementation of CCFV:

> Explores sets of solutions at a time

E = 6 N .. N Uy
Sy M ... T 6, individual solutions for each literal
G combination of compatible solutions

@ Heavy use of memoization

© Bottleneck in merging solution sets

CCFV: A quantifier-instantiation framework for SMT

15 / 20

Evaluation

Efiiciency scatter plot

Logic Class Z3 CVC4 verit+tc verit+tcb verit+t verit
UE grasshopper 418 411 430 435 418 413
sledgehammer 1249 1438 1277 1278 1134 1066
boogie 852 844 706 690 660 661
sexpr 26 12 7 7 5 5
UFLIA grasshopper 341 322 326 361 340 335
sledgehammer 1581 1944 1790 1799 1620 1569
simplify 831 766 803 801 735 690
simplify2 2337 2330 2307 2303 2291 2177
Total 7635 8067 7676 7678 7203 6858

> experiments in the “UF”, “UFLIA", “UFLRA" and “UFIDL" categories of SMT-LIB, which have 10 495 benchmarks

annotated as unsatisfiable, with 30s timeout. Circa 2017.

CCFV: A quantifier-instantiation framework for SMT

16 / 20

Depth-first vs Breadth-first CCFV

verit+tc

verit+tcb

The depth-first CCFV outperforms its breadth-first counterpart by a
small margin.

Both perform well and are viable approaches

* experiments in the “UF”, “UFLIA", “UFLRA" and “UFIDL" categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 100s timeout.

CCFV: A quantifier-instantiation framework for SMT 17 / 20

Limitations

> Ground congruence closure not closed to disequality entailment

E.g. g(f(a), h(b)) % g(f(b), h(a)) € E should lead to adding a %2 b to E

> No learning when backtracking

> Hard to check entailment for theories other than EUF

2

F) =5 (fz+y) <z +2y)0

CCFV: A quantifier-instantiation framework for SMT 18 / 20

Limitations

> Ground congruence closure not closed to disequality entailment

E.g. g(f(a), h(b)) % g(f(b), h(a)) € E should lead to adding a %2 b to E

> No learning when backtracking

> Hard to check entailment for theories other than EUF

2

F) =5 (fz+y) <z +2y)0

Yes, for 0 = {z +— =3, y — 4}

CCFV: A quantifier-instantiation framework for SMT 18 / 20

An extension for HOL

> Build on initial extension of SMT solvers to HOL [BRO+19]

>> Lifting CCFV allows directly lifting compatible instantiation techniques

> Issues

» Currying complicates indexing
B Terms now have the form Q(Q(f, a), b)

» Higher-order unification (i.e. lambdas) complicates entailment checking

m Equalities between functions
m Unification with different arguments
m Undecidability

CCFV: A quantifier-instantiation framework for SMT 19 / 20

Lifting CCFV to AfHOL via SAT encoding

> Simpler fragment as sandbox

> Encode entailment checks to SAT

» Easier to grasp
» Free learning
» Allows optimizations from “global reasoning”

> Build substitutions from SAT models

> Still very much in progress

CCFV: A quantifier-instantiation framework for SMT

[ST20]

20 / 20

Congruence Closure with Free Variables:
A quantifier-instantiation framework for SMT

Haniel Barbosa

UFM"MG

f 4 UFMG | ICEx _—

N DEPARTAMENTO DE
CIENCIA DA COMPUTACAO

SRI Formal Topics Seminar
2020-07-16, The Internet

CCFV calculus

Esltgpax~snAnC
Es U{z ~ s} kg rep({z ~ s}, C)

ASSIGN if x & FV(s)

Eylbpz~ f(@)AC

Uvar if z € FV(f(a))
E, kg \/MGECC’ f(t_)e[t](x ~MEAUL 2B A Aty b AC)

By kg f(@) ~ f(5) A C

Ucowmp
Es Fg (ui~siA-Aup~sp AC)V
\/ UL 2t A Aup 2t A
[tleECC, f(D)elt], f(I7)elt] \ s1 =ty A~ Asp =ty ANC
Eqs kg f(u) ~ g(Bm) ANC
2 /) (5m) UGeN if f#g

Es e \jene,

(Ur 2ty A Atup Xty A)
FEER], 9t m)Elt]

S A Asm ~t], ANC

CCFV: A quantifier-instantiation framework for SMT 21 /20

CCFV calculus

E;Fgx2yncC
DvARr
(z=tAy~t AC)

Eolte \/[t], [t']€ECC, Bl=tgt!

E,kpax f5)AC
Drapp
(x=tAst =t A Asp =t AC)

Es *e Vg wepe,
El=tt!, f(t)€t']

Eo kg f(@) 2 g(Gm) AC b
GEN

Uy 2ty A Aup 2 tp A
s1 2ty AN Asm 2t AC

Ey kg \/

[t], [t']€ B, El=ttt,
FE)E[], g(t' m)E[t']

EslFptnC
——— Y fEE/Y

Es kg C1 Vv Co
SPLIT
Es; kg C

Es kg Cq E; kg Co

EslFptNC
E; IFg L

Far, if £ is ground and E = ¢

CCFV: A quantifier-instantiation framework for SMT

22 /20

References

Haniel Barbosa, Pas-
cal Fontaine, and Andrew Reynolds. “Congruence Closure with Free Variables”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part Il.

Ed. by Axel Legay and Tiziana Margaria. Vol. 10206. Lecture Notes in Computer
Science. 2017, pp. 214-230.

Nikolaj Bjgrner and Mikolas Janota. “Playing with Quantified Satisfaction”. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by

Ansgar Fehnker, Annabelle Mclver, Geoff Sutcliffe, et al. Vol. 35. EPiC Series in
Computing. EasyChair, 2015, pp. 15-27.

Nikolaj Bjgrner. “Linear Quantifier Elimination as an Abstract Decision
Procedure”. In:

International Joint Conference on Automated Reasoning (IJCAR). Ed. by
Jiirgen Giesl and Reiner Hahnle. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 316-330.

Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, et al. “Extending SMT
Solvers to Higher-Order Logic”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Pascal Fontaine.
Vol. 11716. Lecture Notes in Computer Science. Springer, 2019, pp. 35-54.

References

@ David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover
for Program Checking”. In: J. ACM 52.3 (2005), pp. 365-473.

@ Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories”. In:
Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler.
Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306—-320.

@ Leonardo de Moura and Nikolaj Bjgrner. “Efficient E-Matching for SMT Solvers”.
In: Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning.
Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183—-198.

@ David Monniaux. “Quantifier Elimination by Lazy Model Enumeration”. In:
Computer Aided Verification (CAV). Ed. by Tayssir Touili, Byron Cook, and
Paul B. Jackson. Vol. 6174. Lecture Notes in Computer Science. Springer, 2010,
pp. 585-599.

@ David A. Plaisted. “History and Prospects for First-Order Automated
Deduction”. In:
Automated Deduction - CADE-25 - 25th International Conference on Automated Dec
Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer
Science. Springer, 2015, pp. 3-28.

References

@ Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. “Revisiting Enumerative
Instantiation”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part Il.
Ed. by Dirk Beyer and Marieke Huisman. Vol. 10806. Lecture Notes in Computer
Science. Springer, 2018, pp. 112-131.

@ Andrew Reynolds, Morgan Deters, Viktor Kuncak, et al.
“Counterexample-Guided Quantifier Instantiation for Synthesis in SMT". In:
Computer Aided Verification (CAV). Ed. by Daniel Kroening and
Corina S. Pasareanu. Vol. 9207. Lecture Notes in Computer Science. Springer,
2015, pp. 198-216.

@ Andrew Reynolds, Cesare Tinelli, Amit Goel, et al. “Quantifier Instantiation
Techniques for Finite Model Finding in SMT". In:
Proc. Conference on Automated Deduction (CADE). Ed. by
Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer,
2013, pp. 377-391.

@ Andrew Reynolds, Cesare Tinelli, and Leonardo Mendon¢a de Moura. “Finding
conflicting instances of quantified formulas in SMT". In:
Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014,
pp. 195-202.

References

@ Daniel ElI Ouraoui Haniel Barbosa Sophie Tourret Pascal Fontaine.
“Higher-Order SMT Solving (work in progress)”. SMT 2020. 2020.

	References

