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Overview

B Instantiation in SMT

B Congruence closure with free variables

I E-ground (dis)unification
I Casting instantiations techniques
I Decision procedure
I Implementation
I Evaluation

B Issues and extensions

I WIP towards HOSMT
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CDCL(T) architecture

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E

B E is a set of ground literals {a ≤ b, b ≤ a + x, x ' 0, f(a) 6' f(b)}

B Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)
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Instantiation techniques

B Trigger-based
[DNS05; MB07]

B Conflict-based
[RTM14; BFR17]

B Model-based
[GM09; RTG+13]

⊕ General: ∀+EUF+...

� Finding instantiations is
hard

B Enumerative
[RBF18]

⊕ Easy to implement

⊕ Reliable last resort

B QE-based [Mon10; Bjø10;

RDK+15; BJ15]

⊕ Decision procedures available

� Pure fragments

CCFV is a unifying framework for
trigger-, conflict-, and model-based instantiation
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A bit of history

Dec. 2013: “Make veriT great on quantifiers.
Probably try superposition.”

After much suffering acting like a resolution prover...

“A resolution prover is like a prolific but not very well organized
mathematician filling notebooks with trivial deductions, with no overall
sense of where he is going. Once in a while he stumbles on something
interesting.” - David A. Plaisted [Pla15]
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A bit of history

Dec. 2013: “Make veriT great on quantifiers.
Probably try superposition.”

Conflict-based instantiation [RTM14]

B Given theory T , a model E ∪Q, for some ∀x̄. ψ ∈ Q find σ s.t.
E ∧ ψσ |=T ⊥

B Add instance ∀x̄. ψ → ψσ to quantifier-free solver

Finding conflicting instances requires deriving σ s.t. E |=T ¬ψσ

⊕ Goal-oriented instantiation technique

⊕ Efficient

� Specialized solution

� Incomplete matching
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Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}
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E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground,
finding a substitution σ s.t. E |= Lσ

B Solution space can be restricted into ground terms from E ∪ L

B NP-complete

I NP: solutions can checked in polynomial time
I NP-hard: reduction of 3-SAT into the entailment

B Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ
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Casting instantiation techniques: Trigger-based

E |= (u1 ' y1 ∧ · · · ∧ um ' ym)σ

where {u1, . . . , um} is a trigger for ∀x̄. ψ ∈ Q and each yiσ ∈ T(E)

B Consider

I E = {f(a) ' g(b), h(a) ' b, f(a) ' f(c)}
I Q = {∀x. f(x) 6' g(h(x))}, Trigger={f(x)}

B Solving E |= (f(x) ' y)σ yields

I σ1 = {y 7→ f(a), x 7→ a}
I σ2 = {y 7→ f(c), x 7→ c}

B The instantiation lemmas are:

I ∀x. f(x) 6' g(h(x))→ f(a) 6' g(h(a))
I ∀x. f(x) 6' g(h(x))→ f(c) 6' g(h(c))
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Casting instantiation techniques: Conflict-based

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

B Consider

I E = {f(a) ' g(b), h(a) ' b, f(a) ' f(c)}
I Q = {∀x. f(x) 6' g(h(x))}

B Solving E |= (f(x) ' g(h(x)))σ yields

I σ = {x 7→ a}

B The instantiation lemma is:

I ∀x. f(x) 6' g(h(x))→ f(a) 6' g(h(a))
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Casting instantiation techniques: Model-based

Etot |= ¬ψσ, for some ∀x̄. ψ ∈ Q

where Etot is a total extension of E s.t.:

I ground terms not in E necessary for evaluating Q are added

I all terms in T(E) not asserted equal are made disequal

B Consider

I E = {f(a) ' g(b), h(a) ' b}
I Q = {∀x. f(x) 6' g(x), ∀xy. ψ}, e = a as a default value, and

Etot = E ∪ {a 6' b, a 6' f(a), b 6' f(a)}
∪ {f(b) ' f(a), f(f(a)) ' f(a), g(a) ' a, g(f(a)) ' a} ∪ {. . . }

B Solving {. . . , f(a) ' g(b), f(b) ' f(a), . . . } |= f(x) ' g(x)σ yields

I σ = {x 7→ b}

B The lemma ∀x. f(x) 6' g(x)→ f(a) 6' g(a) prevents the same Etot
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How to solve the E-ground (dis)unification problem?

Entailment conditions:

B E |= (x ' y)σ

I xσ = yσ or
I some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

I some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

I xσ = f(s1, . . . , sn)σ or
I some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (f(u1, . . . , un) ' g(v1, . . . , vn))σ and

I f = g and E |= u1σ ' v1σ, . . . , E |= unσ ' vnσ or
I some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and

g(v1, . . . , vn)σ ∈ [t2]

B E |= (u 6' v)σ

I some t1, t2 ∈ T(E) s.t. E |= t1 6' t2, uσ ∈ [t1], and vσ ∈ [t2]
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Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and
terminating calculus for solving E-ground (dis)unification

⊕ (allows for) Goal-oriented instantiation technique

⊕ Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula
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Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅
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Implementation

B Model minimization

I Relevancy
I Prime implicant

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

f →


f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t′n])

I E |= f(x)σ ' t only if [t] contains some f(t′)

E |= f(x)σ ' g(y)σ only if some [t] contains some f(t′) and some g(t′′)

Bitmasks for fast checking if symbol has applications in congruence class

B Mapping from congruence class to classes it’s disequal to
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Implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ . . .

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ . . .

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′
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Implementation

A breadth-first implementation of CCFV:

B Explores sets of solutions at a time

E |= `1 ∧ . . . ∧ `n
↓ ↓
S1 u . . . u Sn individual solutions for each literal︸ ︷︷ ︸

S combination of compatible solutions

⊕ Heavy use of memoization

� Bottleneck in merging solution sets

CCFV: A quantifier-instantiation framework for SMT 15 / 20



Evaluation
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Logic Class Z3 CVC4 verit+tc verit+tcb verit+t verit

UF
grasshopper 418 411 430 435 418 413
sledgehammer 1249 1438 1277 1278 1134 1066

UFLIA

boogie 852 844 706 690 660 661
sexpr 26 12 7 7 5 5
grasshopper 341 322 326 361 340 335
sledgehammer 1581 1944 1790 1799 1620 1569
simplify 831 766 803 801 735 690
simplify2 2337 2330 2307 2303 2291 2177

Total 7635 8067 7676 7678 7203 6858

B experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 30s timeout. Circa 2017.
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Depth-first vs Breadth-first CCFV
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The depth-first CCFV outperforms its breadth-first counterpart by a
small margin.

Both perform well and are viable approaches
* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 100s timeout.
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Limitations

B Ground congruence closure not closed to disequality entailment

E.g. g(f(a), h(b)) 6' g(f(b), h(a)) ∈ E should lead to adding a 6' b to E

B No learning when backtracking

B Hard to check entailment for theories other than EUF

f(1) ' 5
?

|=LIA (f(x+ y) ≤ x+ 2y)σ

Yes, for σ = {x 7→ −3, y 7→ 4}
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An extension for HOL

B Build on initial extension of SMT solvers to HOL [BRO+19]

B Lifting CCFV allows directly lifting compatible instantiation techniques

B Issues

I Currying complicates indexing

Terms now have the form @(@(f, a), b)

I Higher-order unification (i.e. lambdas) complicates entailment checking

Equalities between functions
Unification with different arguments
Undecidability
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Lifting CCFV to λfHOL via SAT encoding [ST20]

B Simpler fragment as sandbox

B Encode entailment checks to SAT

I Easier to grasp
I Free learning
I Allows optimizations from “global reasoning”

B Build substitutions from SAT models

B Still very much in progress
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Congruence Closure with Free Variables:
A quantifier-instantiation framework for SMT

Haniel Barbosa

SRI Formal Topics Seminar

2020-07-16, The Internet



CCFV calculus

Eσ 
E x ' s ∧ C
Assign if x 6∈ FV(s)

Eσ ∪ {x ' s} 
E rep({x ' s}, C)

Eσ 
E x ' f(ū) ∧ C
Uvar if x ∈ FV(f(ū))

Eσ 
E
∨

[t]∈Ecc, f(t̄)∈[t]
(x ' t ∧ u1 ' t1 ∧ · · · ∧ un ' tn ∧ C)

Eσ 
E f(ū) ' f(s̄) ∧ C
Ucomp

Eσ 
E (u1 ' s1 ∧ · · · ∧ un ' sn ∧ C) ∨∨
[t]∈Ecc, f(t̄)∈[t], f(t̄′ )∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C

)

Eσ 
E f(ū) ' g(s̄m) ∧ C
Ugen if f 6= g

Eσ 
E
∨

[t]∈Ecc,

f(t̄)∈[t], g(t̄′m)∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

)
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CCFV calculus

Eσ 
E x 6' y ∧ C
Dvar

Eσ 
E
∨

[t], [t′]∈Ecc, E|=t6't′
(x ' t ∧ y ' t′ ∧ C)

Eσ 
E x 6' f(s̄) ∧ C
Dfapp

Eσ 
E
∨

[t], [t′]∈Ecc,

E|=t6't′, f(t̄′ )∈[t′]

(x ' t ∧ s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C)

Eσ 
E f(ū) 6' g(s̄m) ∧ C
Dgen

Eσ 
E
∨

[t], [t′]∈Ecc, E|=t6't′,
f(t̄)∈[t], g(t̄′m)∈[t′]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

)

Eσ 
E C1 ∨ C2
Split

Eσ 
E C1 Eσ 
E C2

Eσ 
E ` ∧ C
Yield if E |= `

Eσ 
E C

Eσ 
E ` ∧ C
Fail

Eσ 
E ⊥
if ` is ground and E 6|= `
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