
Congruence Closure with Free Variables:
A quantifier-instantiation framework for SMT

Haniel Barbosa

SRI Formal Topics Seminar

2020-07-16, The Internet

Overview

B Instantiation in SMT

B Congruence closure with free variables

I E-ground (dis)unification
I Casting instantiations techniques
I Decision procedure
I Implementation
I Evaluation

B Issues and extensions

I WIP towards HOSMT

CCFV: A quantifier-instantiation framework for SMT 1 / 20

CDCL(T) architecture

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E

B E is a set of ground literals {a ≤ b, b ≤ a + x, x ' 0, f(a) 6' f(b)}

B Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

CCFV: A quantifier-instantiation framework for SMT 2 / 20

CDCL(T) architecture

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E ∪Q
B E is a set of ground literals {a ≤ b, b ≤ a + x, x ' 0, f(a) 6' f(b)}

B Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

CCFV: A quantifier-instantiation framework for SMT 2 / 20

Instantiation techniques

B Trigger-based
[DNS05; MB07]

B Conflict-based
[RTM14; BFR17]

B Model-based
[GM09; RTG+13]

⊕ General: ∀+EUF+...

� Finding instantiations is
hard

B Enumerative
[RBF18]

⊕ Easy to implement

⊕ Reliable last resort

B QE-based [Mon10; Bjø10;

RDK+15; BJ15]

⊕ Decision procedures available

� Pure fragments

CCFV is a unifying framework for
trigger-, conflict-, and model-based instantiation

CCFV: A quantifier-instantiation framework for SMT 3 / 20

Instantiation techniques

B Trigger-based
[DNS05; MB07]

B Conflict-based
[RTM14; BFR17]

B Model-based
[GM09; RTG+13]

⊕ General: ∀+EUF+...

� Finding instantiations is
hard

B Enumerative
[RBF18]

⊕ Easy to implement

⊕ Reliable last resort

B QE-based [Mon10; Bjø10;

RDK+15; BJ15]

⊕ Decision procedures available

� Pure fragments

CCFV is a unifying framework for
trigger-, conflict-, and model-based instantiation

CCFV: A quantifier-instantiation framework for SMT 3 / 20

A bit of history

Dec. 2013: “Make veriT great on quantifiers.
Probably try superposition.”

After much suffering acting like a resolution prover...

“A resolution prover is like a prolific but not very well organized
mathematician filling notebooks with trivial deductions, with no overall
sense of where he is going. Once in a while he stumbles on something
interesting.” - David A. Plaisted [Pla15]

CCFV: A quantifier-instantiation framework for SMT 4 / 20

A bit of history

Dec. 2013: “Make veriT great on quantifiers.
Probably try superposition.”

Conflict-based instantiation [RTM14]

B Given theory T , a model E ∪Q, for some ∀x̄. ψ ∈ Q find σ s.t.
E ∧ ψσ |=T ⊥

B Add instance ∀x̄. ψ → ψσ to quantifier-free solver

Finding conflicting instances requires deriving σ s.t. E |=T ¬ψσ

⊕ Goal-oriented instantiation technique

⊕ Efficient

� Specialized solution

� Incomplete matching
CCFV: A quantifier-instantiation framework for SMT 4 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

CCFV: A quantifier-instantiation framework for SMT 5 / 20

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground,
finding a substitution σ s.t. E |= Lσ

B Solution space can be restricted into ground terms from E ∪ L

B NP-complete

I NP: solutions can checked in polynomial time
I NP-hard: reduction of 3-SAT into the entailment

B Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ

CCFV: A quantifier-instantiation framework for SMT 6 / 20

Casting instantiation techniques: Trigger-based

E |= (u1 ' y1 ∧ · · · ∧ um ' ym)σ

where {u1, . . . , um} is a trigger for ∀x̄. ψ ∈ Q and each yiσ ∈ T(E)

B Consider

I E = {f(a) ' g(b), h(a) ' b, f(a) ' f(c)}
I Q = {∀x. f(x) 6' g(h(x))}, Trigger={f(x)}

B Solving E |= (f(x) ' y)σ yields

I σ1 = {y 7→ f(a), x 7→ a}
I σ2 = {y 7→ f(c), x 7→ c}

B The instantiation lemmas are:

I ∀x. f(x) 6' g(h(x))→ f(a) 6' g(h(a))
I ∀x. f(x) 6' g(h(x))→ f(c) 6' g(h(c))

CCFV: A quantifier-instantiation framework for SMT 7 / 20

Casting instantiation techniques: Conflict-based

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

B Consider

I E = {f(a) ' g(b), h(a) ' b, f(a) ' f(c)}
I Q = {∀x. f(x) 6' g(h(x))}

B Solving E |= (f(x) ' g(h(x)))σ yields

I σ = {x 7→ a}

B The instantiation lemma is:

I ∀x. f(x) 6' g(h(x))→ f(a) 6' g(h(a))

CCFV: A quantifier-instantiation framework for SMT 8 / 20

Casting instantiation techniques: Model-based

Etot |= ¬ψσ, for some ∀x̄. ψ ∈ Q

where Etot is a total extension of E s.t.:

I ground terms not in E necessary for evaluating Q are added

I all terms in T(E) not asserted equal are made disequal

B Consider

I E = {f(a) ' g(b), h(a) ' b}
I Q = {∀x. f(x) 6' g(x), ∀xy. ψ}, e = a as a default value, and

Etot = E ∪ {a 6' b, a 6' f(a), b 6' f(a)}
∪ {f(b) ' f(a), f(f(a)) ' f(a), g(a) ' a, g(f(a)) ' a} ∪ {. . . }

B Solving {. . . , f(a) ' g(b), f(b) ' f(a), . . . } |= f(x) ' g(x)σ yields

I σ = {x 7→ b}

B The lemma ∀x. f(x) 6' g(x)→ f(a) 6' g(a) prevents the same Etot

CCFV: A quantifier-instantiation framework for SMT 9 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

B E |= (x ' y)σ

I xσ = yσ or
I some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

I some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

I xσ = f(s1, . . . , sn)σ or
I some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (f(u1, . . . , un) ' g(v1, . . . , vn))σ and

I f = g and E |= u1σ ' v1σ, . . . , E |= unσ ' vnσ or
I some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and

g(v1, . . . , vn)σ ∈ [t2]

B E |= (u 6' v)σ

I some t1, t2 ∈ T(E) s.t. E |= t1 6' t2, uσ ∈ [t1], and vσ ∈ [t2]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

B E |= (x ' y)σ

I xσ = yσ or
I some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

I some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

I xσ = f(s1, . . . , sn)σ or
I some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (f(u1, . . . , un) ' g(v1, . . . , vn))σ and

I f = g and E |= u1σ ' v1σ, . . . , E |= unσ ' vnσ or
I some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and

g(v1, . . . , vn)σ ∈ [t2]

B E |= (u 6' v)σ

I some t1, t2 ∈ T(E) s.t. E |= t1 6' t2, uσ ∈ [t1], and vσ ∈ [t2]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

B E |= (x ' y)σ

I xσ = yσ or
I some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

I some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

I xσ = f(s1, . . . , sn)σ or
I some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (f(u1, . . . , un) ' g(v1, . . . , vn))σ and

I f = g and E |= u1σ ' v1σ, . . . , E |= unσ ' vnσ or
I some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and

g(v1, . . . , vn)σ ∈ [t2]

B E |= (u 6' v)σ

I some t1, t2 ∈ T(E) s.t. E |= t1 6' t2, uσ ∈ [t1], and vσ ∈ [t2]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

B E |= (x ' y)σ

I xσ = yσ or
I some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

I some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

I xσ = f(s1, . . . , sn)σ or
I some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (f(u1, . . . , un) ' g(v1, . . . , vn))σ and

I f = g and E |= u1σ ' v1σ, . . . , E |= unσ ' vnσ or
I some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and

g(v1, . . . , vn)σ ∈ [t2]

B E |= (u 6' v)σ

I some t1, t2 ∈ T(E) s.t. E |= t1 6' t2, uσ ∈ [t1], and vσ ∈ [t2]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

How to solve the E-ground (dis)unification problem?

Entailment conditions:

B E |= (x ' y)σ

I xσ = yσ or
I some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

I some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (x ' f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

I xσ = f(s1, . . . , sn)σ or
I some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

B E |= (f(u1, . . . , un) ' g(v1, . . . , vn))σ and

I f = g and E |= u1σ ' v1σ, . . . , E |= unσ ' vnσ or
I some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and

g(v1, . . . , vn)σ ∈ [t2]

B E |= (u 6' v)σ

I some t1, t2 ∈ T(E) s.t. E |= t1 6' t2, uσ ∈ [t1], and vσ ∈ [t2]

CCFV: A quantifier-instantiation framework for SMT 10 / 20

Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and
terminating calculus for solving E-ground (dis)unification

⊕ (allows for) Goal-oriented instantiation technique

⊕ Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula

CCFV: A quantifier-instantiation framework for SMT 11 / 20

Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Finding solutions σ for E |= Lσ

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

CCFV: A quantifier-instantiation framework for SMT 12 / 20

Implementation

B Model minimization

I Relevancy
I Prime implicant

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

f →


f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t′n])

I E |= f(x)σ ' t only if [t] contains some f(t′)

E |= f(x)σ ' g(y)σ only if some [t] contains some f(t′) and some g(t′′)

Bitmasks for fast checking if symbol has applications in congruence class

B Mapping from congruence class to classes it’s disequal to

CCFV: A quantifier-instantiation framework for SMT 13 / 20

Implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ . . .

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ . . .

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′

CCFV: A quantifier-instantiation framework for SMT 14 / 20

Implementation

A breadth-first implementation of CCFV:

B Explores sets of solutions at a time

E |= `1 ∧ . . . ∧ `n
↓ ↓
S1 u . . . u Sn individual solutions for each literal︸ ︷︷ ︸

S combination of compatible solutions

⊕ Heavy use of memoization

� Bottleneck in merging solution sets

CCFV: A quantifier-instantiation framework for SMT 15 / 20

Evaluation

0.1

1

10

0.1 1 10

ve
rit

_t

verit

0.1

1

10

0.1 1 10

ve
rit

_t

verit

0.1

1

10

0.1 1 10

ve
rit

_t

verit

0.1

1

10

0.1 1 10

ve
rit

_t

verit

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

Logic Class Z3 CVC4 verit+tc verit+tcb verit+t verit

UF
grasshopper 418 411 430 435 418 413
sledgehammer 1249 1438 1277 1278 1134 1066

UFLIA

boogie 852 844 706 690 660 661
sexpr 26 12 7 7 5 5
grasshopper 341 322 326 361 340 335
sledgehammer 1581 1944 1790 1799 1620 1569
simplify 831 766 803 801 735 690
simplify2 2337 2330 2307 2303 2291 2177

Total 7635 8067 7676 7678 7203 6858

B experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 30s timeout. Circa 2017.

CCFV: A quantifier-instantiation framework for SMT 16 / 20

Depth-first vs Breadth-first CCFV

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

The depth-first CCFV outperforms its breadth-first counterpart by a
small margin.

Both perform well and are viable approaches
* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 100s timeout.

CCFV: A quantifier-instantiation framework for SMT 17 / 20

Limitations

B Ground congruence closure not closed to disequality entailment

E.g. g(f(a), h(b)) 6' g(f(b), h(a)) ∈ E should lead to adding a 6' b to E

B No learning when backtracking

B Hard to check entailment for theories other than EUF

f(1) ' 5
?

|=LIA (f(x+ y) ≤ x+ 2y)σ

Yes, for σ = {x 7→ −3, y 7→ 4}

CCFV: A quantifier-instantiation framework for SMT 18 / 20

Limitations

B Ground congruence closure not closed to disequality entailment

E.g. g(f(a), h(b)) 6' g(f(b), h(a)) ∈ E should lead to adding a 6' b to E

B No learning when backtracking

B Hard to check entailment for theories other than EUF

f(1) ' 5
?

|=LIA (f(x+ y) ≤ x+ 2y)σ

Yes, for σ = {x 7→ −3, y 7→ 4}

CCFV: A quantifier-instantiation framework for SMT 18 / 20

An extension for HOL

B Build on initial extension of SMT solvers to HOL [BRO+19]

B Lifting CCFV allows directly lifting compatible instantiation techniques

B Issues

I Currying complicates indexing

Terms now have the form @(@(f, a), b)

I Higher-order unification (i.e. lambdas) complicates entailment checking

Equalities between functions
Unification with different arguments
Undecidability

CCFV: A quantifier-instantiation framework for SMT 19 / 20

Lifting CCFV to λfHOL via SAT encoding [ST20]

B Simpler fragment as sandbox

B Encode entailment checks to SAT

I Easier to grasp
I Free learning
I Allows optimizations from “global reasoning”

B Build substitutions from SAT models

B Still very much in progress

CCFV: A quantifier-instantiation framework for SMT 20 / 20

Congruence Closure with Free Variables:
A quantifier-instantiation framework for SMT

Haniel Barbosa

SRI Formal Topics Seminar

2020-07-16, The Internet

CCFV calculus

Eσ
E x ' s ∧ C
Assign if x 6∈ FV(s)

Eσ ∪ {x ' s}
E rep({x ' s}, C)

Eσ
E x ' f(ū) ∧ C
Uvar if x ∈ FV(f(ū))

Eσ
E
∨

[t]∈Ecc, f(t̄)∈[t]
(x ' t ∧ u1 ' t1 ∧ · · · ∧ un ' tn ∧ C)

Eσ
E f(ū) ' f(s̄) ∧ C
Ucomp

Eσ
E (u1 ' s1 ∧ · · · ∧ un ' sn ∧ C) ∨∨
[t]∈Ecc, f(t̄)∈[t], f(t̄′)∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C

)

Eσ
E f(ū) ' g(s̄m) ∧ C
Ugen if f 6= g

Eσ
E
∨

[t]∈Ecc,

f(t̄)∈[t], g(t̄′m)∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

)

CCFV: A quantifier-instantiation framework for SMT 21 / 20

CCFV calculus

Eσ
E x 6' y ∧ C
Dvar

Eσ
E
∨

[t], [t′]∈Ecc, E|=t6't′
(x ' t ∧ y ' t′ ∧ C)

Eσ
E x 6' f(s̄) ∧ C
Dfapp

Eσ
E
∨

[t], [t′]∈Ecc,

E|=t6't′, f(t̄′)∈[t′]

(x ' t ∧ s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C)

Eσ
E f(ū) 6' g(s̄m) ∧ C
Dgen

Eσ
E
∨

[t], [t′]∈Ecc, E|=t6't′,
f(t̄)∈[t], g(t̄′m)∈[t′]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

)

Eσ
E C1 ∨ C2
Split

Eσ
E C1 Eσ
E C2

Eσ
E ` ∧ C
Yield if E |= `

Eσ
E C

Eσ
E ` ∧ C
Fail

Eσ
E ⊥
if ` is ground and E 6|= `

CCFV: A quantifier-instantiation framework for SMT 22 / 20

References

Haniel Barbosa, Pas-
cal Fontaine, and Andrew Reynolds. “Congruence Closure with Free Variables”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II.
Ed. by Axel Legay and Tiziana Margaria. Vol. 10206. Lecture Notes in Computer
Science. 2017, pp. 214–230.

Nikolaj Bjørner and Mikolas Janota. “Playing with Quantified Satisfaction”. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by
Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, et al. Vol. 35. EPiC Series in
Computing. EasyChair, 2015, pp. 15–27.

Nikolaj Bjørner. “Linear Quantifier Elimination as an Abstract Decision
Procedure”. In:
International Joint Conference on Automated Reasoning (IJCAR). Ed. by
Jürgen Giesl and Reiner Hähnle. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 316–330.

Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, et al. “Extending SMT
Solvers to Higher-Order Logic”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by Pascal Fontaine.
Vol. 11716. Lecture Notes in Computer Science. Springer, 2019, pp. 35–54.

References

David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover
for Program Checking”. In: J. ACM 52.3 (2005), pp. 365–473.

Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories”. In:
Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler.
Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306–320.

Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”.
In: Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning.
Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183–198.

David Monniaux. “Quantifier Elimination by Lazy Model Enumeration”. In:
Computer Aided Verification (CAV). Ed. by Tayssir Touili, Byron Cook, and
Paul B. Jackson. Vol. 6174. Lecture Notes in Computer Science. Springer, 2010,
pp. 585–599.

David A. Plaisted. “History and Prospects for First-Order Automated
Deduction”. In:
Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings.
Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer
Science. Springer, 2015, pp. 3–28.

References

Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. “Revisiting Enumerative
Instantiation”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II.
Ed. by Dirk Beyer and Marieke Huisman. Vol. 10806. Lecture Notes in Computer
Science. Springer, 2018, pp. 112–131.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, et al.
“Counterexample-Guided Quantifier Instantiation for Synthesis in SMT”. In:
Computer Aided Verification (CAV). Ed. by Daniel Kroening and
Corina S. Pasareanu. Vol. 9207. Lecture Notes in Computer Science. Springer,
2015, pp. 198–216.

Andrew Reynolds, Cesare Tinelli, Amit Goel, et al. “Quantifier Instantiation
Techniques for Finite Model Finding in SMT”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by
Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer,
2013, pp. 377–391.

Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. “Finding
conflicting instances of quantified formulas in SMT”. In:
Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014,
pp. 195–202.

References

Daniel El Ouraoui Haniel Barbosa Sophie Tourret Pascal Fontaine.
“Higher-Order SMT Solving (work in progress)”. SMT 2020. 2020.

	References

