
An introduction to SMT solving with quantifiers

Haniel Barbosa, Universidade Federal de Minas Gerais

SAT/SMT/AR Summer School

2024–06–27, LORIA–Inria, Université de Lorraine, Nancy, FR

Agenda

• What are quantifiers for in SMT?

• An overview of classic instantiation techniques

• Trigger-based instantiation

• Conflict-based instantiation

• Model-based instantiation

• A unifying framework for classic instantiation techniques

• Effective enumerative instantiation

• Playing with different instantiation techniques

1

Why do we need quantifiers?

• We’ve just seen how powerful and flexible SMT solvers are.

• The efficiency of SMT solvers comes from dedicated decision procedures for their theories.

• But what if the problem you want to solve does not fit existing theories?

2

Example

(set-logic UF)

(declare-sort U 0)

(declare-fun f (U U) U)

(declare-const a U)

(declare-const b U)

(assert (not (= (f a b) (f b a))))

(check-sat)

(set-logic UF)

(declare-sort U 0)

(declare-fun f (U U) U)

(declare-const a U)

(declare-const b U)

(assert (not (= (f a b) (f b a))))

(assert (forall ((x U) (y U)) (= (f x y) (f y x))))

(check-sat)

3

Example

(set-logic UF)

(declare-sort U 0)

(declare-fun f (U U) U)

(declare-const a U)

(declare-const b U)

(assert (not (= (f a b) (f b a))))

(check-sat)

(set-logic UF)

(declare-sort U 0)

(declare-fun f (U U) U)

(declare-const a U)

(declare-const b U)

(assert (not (= (f a b) (f b a))))

(assert (forall ((x U) (y U)) (= (f x y) (f y x))))

(check-sat)

3

Quantifiers are important for many applications

• Automatic theorem proving

• Adding axioms for new symbols (tools such Sledghammer [BKPU16])

• Software verification

• Encoding contracts (tools such as Dafny [Lei10] and Verus [LHC+23] rely heavily on quantifiers)

• Function synthesis

• Specifying the behavior of a function to synthesize [ABJ+13; RBN+19]

• Unfortunately, adding quantifiers leads to several complications.

• Undecidable in general

• Explosive heuristics

• Users want it to work as well as on quantifier-free problems

• But as we will see today, state-of-the-art solvers do well with quantifiers in practice

4

Quantifiers are important for many applications

• Automatic theorem proving

• Adding axioms for new symbols (tools such Sledghammer [BKPU16])

• Software verification

• Encoding contracts (tools such as Dafny [Lei10] and Verus [LHC+23] rely heavily on quantifiers)

• Function synthesis

• Specifying the behavior of a function to synthesize [ABJ+13; RBN+19]

• Unfortunately, adding quantifiers leads to several complications.

• Undecidable in general

• Explosive heuristics

• Users want it to work as well as on quantifier-free problems

• But as we will see today, state-of-the-art solvers do well with quantifiers in practice

4

Quantifiers are important for many applications

• Automatic theorem proving

• Adding axioms for new symbols (tools such Sledghammer [BKPU16])

• Software verification

• Encoding contracts (tools such as Dafny [Lei10] and Verus [LHC+23] rely heavily on quantifiers)

• Function synthesis

• Specifying the behavior of a function to synthesize [ABJ+13; RBN+19]

• Unfortunately, adding quantifiers leads to several complications.

• Undecidable in general

• Explosive heuristics

• Users want it to work as well as on quantifier-free problems

• But as we will see today, state-of-the-art solvers do well with quantifiers in practice

4

Satisfiability Modulo Theories (SMT)

First-order formulas in CNF:
t ::= x | f(t, . . . , t)
φ ::= p(t, . . . , t) | ¬φ | φ ∨ φ | ∀x1 . . . xn. φ

Given a formula φ in FOL and background theories T1, . . . , Tn, finding a modelM giving an

interpretation to all terms and predicates such thatM |=T1,...,Tn
φ.

• Quantified formulas can be classified as strong and weak quantifiers, which means to occur in a

negative (e.g., under a single negation) or positive context.

• It is sound to Skolemize strong quantifiers:

∃x. φ[x]
where k is a fresh function symbol

φ[k]

• If Skolemization is done under other quantifiers, the introduced function must take the respective

quantified variables as arguments.

∀y. ∃x. p(x, y)
∀y. p(f(y), y)

5

CDCL(T) architecture

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E

• E is a set of ground literals {a ≤ b, b ≤ a + x, x ≃ 0, f(a) ̸≃ f(b)}

• Q is a set of quantified clauses {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}

Instantiation module generates instances of Q f(a) ̸≃ f(b) ∨ g(a) ≃ h(b)

6

CDCL(T) architecture

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E ∪ Q

• E is a set of ground literals {a ≤ b, b ≤ a + x, x ≃ 0, f(a) ̸≃ f(b)}

• Q is a set of quantified clauses {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}

Instantiation module generates instances of Q f(a) ̸≃ f(b) ∨ g(a) ≃ h(b)

6

The abstract procedure: ground case

function CheckSat(φ, T) is
φ← Process(φ) // Simplifications, CNF transformation

do

E ← CheckBoolean(abs(φ)) // SAT solver

if E = ∅ then

return Unsat

C ← CheckGround(E, T) // Theory solvers

φ← φ ∪ C
while C ̸= ∅
return Sat

7

The abstract procedure: quantified case

function CheckSatQ(φ, T) is

φ← Process(φ) // Simplifications, CNF transformation

do

⟨E, Q⟩ ← CheckBoolean(absQ(φ)) // SAT solver

if E ∪Q = ∅ then

return Unsat

C ← CheckGround(E, T) // Theory solvers

if C ̸= ∅ then

φ← φ ∪ C

continue

I ← Inst(E, Q, T) // Instantiation module

φ← φ ∪ I
while I ̸= ∅
if models can be built for T then

return Sat

else

return Unknown

8

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x),∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.

9

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x), ∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.

9

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x), ∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.

9

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x), ∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.

9

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x), ∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.

9

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x), ∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.

9

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x), ∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.

9

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x), ∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability. 9

Instantiation is not the only way to reason about first-order logic

• Superposition-based, tableaux-based systems are well-established theorem provers

• Vampire [KV13], E [SCV19], ...

• Princess [BR15], LeanCop [Ott08], ...

• The focus on instantiation in SMT can be explained by how it makes “quantifier reasoning” simulate

how the other theory solvers work, which is well-suited for the CDCL(T) architecture.

10

Instantiation techniques

• Trigger-based

[DNS05; MB07]

• Conflict-based

[RTM14; BFR17]

• Model-based

[GM09; RTG+13]

⊕ General: ∀+EUF+...

⊖ Finding instantiations is hard

• Enumerative

[RBF18]

⊕ Easy to implement

⊕ Reliable last resort

• QE-based [Mon10; Bjø10; RDK+15; BJ15]

⊕ Decision procedures available

⊖ Pure fragments

• Syntax-Guided Synthesis

(SyGuS)-based [NPR+21]

⊕ Covers pure theories where QE is not

easily available

⊖ Very expensive

11

Instantiation techniques

• Trigger-based

[DNS05; MB07]

• Conflict-based

[RTM14; BFR17]

• Model-based

[GM09; RTG+13]

⊕ General: ∀+EUF+...

⊖ Finding instantiations is hard

• Enumerative

[RBF18]

⊕ Easy to implement

⊕ Reliable last resort

• QE-based [Mon10; Bjø10; RDK+15; BJ15]

⊕ Decision procedures available

⊖ Pure fragments

• Syntax-Guided Synthesis

(SyGuS)-based [NPR+21]

⊕ Covers pure theories where QE is not

easily available

⊖ Very expensive

11

Instantiation strategies: trigger-based [Detlefs et al. J. ACM’05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of
triggers and E-matching

• A trigger is a set of terms whose free variables should cover the respective quantified variables.

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
• Assume the trigger {(P (x))}.
• Since E |= P (x){x 7→ t} ≃ P (t), for t = a, b, c, this strategy may return

{{x 7→ a}, {x 7→ b}, {x 7→ c}}.
• Formally:

e(E, ∀x̄. φ): 1. Select a trigger {t̄1, . . . t̄n} for ∀x̄. φ.

2. For each i = 1, . . . , n, select a set of substitutions Si s.t.

for each σ ∈ Si, E |= t̄iσ ≃ ḡi for some tuple ḡi ∈ T(E).

3. Return
⋃n

i=1 Si.

12

Instantiation strategies: trigger-based [Detlefs et al. J. ACM’05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of
triggers and E-matching

• A trigger is a set of terms whose free variables should cover the respective quantified variables.

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
• Assume the trigger {(P (x))}.
• Since E |= P (x){x 7→ t} ≃ P (t), for t = a, b, c, this strategy may return

{{x 7→ a}, {x 7→ b}, {x 7→ c}}.
• Formally:

e(E, ∀x̄. φ): 1. Select a trigger {t̄1, . . . t̄n} for ∀x̄. φ.

2. For each i = 1, . . . , n, select a set of substitutions Si s.t.

for each σ ∈ Si, E |= t̄iσ ≃ ḡi for some tuple ḡi ∈ T(E).

3. Return
⋃n

i=1 Si.

12

Trigger-based instantiation is highly dependent on the chosen triggers

• A proper selection of triggers may guarantee a decision procedure for some fragments [DCKP13].

• But in general, trigger selection can have a high impact on the solver’s success rate

• Again for E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Assume the trigger {(R(x))}.

• Now there is only one possible instantiation: {x 7→ b}

13

A trigger selection strategy [LP16]

1 Traverse formula and collect trigger heads and trigger killers.

• Trigger heads contain at least one variable and no trigger killers

• Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).

2 Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and

parsimony.

• A candidate is adequate if it contains all the variables

• It is parsimonious if removing any term from the candidate makes it inadequate.

3 For the formula ∀x. p1(x) ∨ · · · ∨ pn(x) we have:

• Trigger heads: {p1(x), . . . , pn(x)}
• 2n adequate candidates

• n which are parsimonious: the singletons {p1(x)}, . . . , {pn(x)}.
4 Remaining candidates ordered by specificity:

• T1 is less specific than T2 if and only if all matchings of T2 are also matchings for T1

• For each t in T1 there is a trigger head t′ in T2 such that t matches t′, i.e. there is a substitution σ such

that tσ = t′.

5 Finally, the possible triggers for the quantified formula are the minimal candidates.

14

A trigger selection strategy [LP16]

1 Traverse formula and collect trigger heads and trigger killers.

• Trigger heads contain at least one variable and no trigger killers

• Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).

2 Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and

parsimony.

• A candidate is adequate if it contains all the variables

• It is parsimonious if removing any term from the candidate makes it inadequate.

3 For the formula ∀x. p1(x) ∨ · · · ∨ pn(x) we have:

• Trigger heads: {p1(x), . . . , pn(x)}
• 2n adequate candidates

• n which are parsimonious: the singletons {p1(x)}, . . . , {pn(x)}.
4 Remaining candidates ordered by specificity:

• T1 is less specific than T2 if and only if all matchings of T2 are also matchings for T1

• For each t in T1 there is a trigger head t′ in T2 such that t matches t′, i.e. there is a substitution σ such

that tσ = t′.

5 Finally, the possible triggers for the quantified formula are the minimal candidates.

14

A trigger selection strategy [LP16]

1 Traverse formula and collect trigger heads and trigger killers.

• Trigger heads contain at least one variable and no trigger killers

• Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).

2 Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and

parsimony.

• A candidate is adequate if it contains all the variables

• It is parsimonious if removing any term from the candidate makes it inadequate.

3 For the formula ∀x. p1(x) ∨ · · · ∨ pn(x) we have:

• Trigger heads: {p1(x), . . . , pn(x)}
• 2n adequate candidates

• n which are parsimonious: the singletons {p1(x)}, . . . , {pn(x)}.

4 Remaining candidates ordered by specificity:

• T1 is less specific than T2 if and only if all matchings of T2 are also matchings for T1

• For each t in T1 there is a trigger head t′ in T2 such that t matches t′, i.e. there is a substitution σ such

that tσ = t′.

5 Finally, the possible triggers for the quantified formula are the minimal candidates.

14

A trigger selection strategy [LP16]

1 Traverse formula and collect trigger heads and trigger killers.

• Trigger heads contain at least one variable and no trigger killers

• Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).

2 Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and

parsimony.

• A candidate is adequate if it contains all the variables

• It is parsimonious if removing any term from the candidate makes it inadequate.

3 For the formula ∀x. p1(x) ∨ · · · ∨ pn(x) we have:

• Trigger heads: {p1(x), . . . , pn(x)}
• 2n adequate candidates

• n which are parsimonious: the singletons {p1(x)}, . . . , {pn(x)}.
4 Remaining candidates ordered by specificity:

• T1 is less specific than T2 if and only if all matchings of T2 are also matchings for T1

• For each t in T1 there is a trigger head t′ in T2 such that t matches t′, i.e. there is a substitution σ such

that tσ = t′.

5 Finally, the possible triggers for the quantified formula are the minimal candidates.

14

A trigger selection strategy [LP16]

1 Traverse formula and collect trigger heads and trigger killers.

• Trigger heads contain at least one variable and no trigger killers

• Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).

2 Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and

parsimony.

• A candidate is adequate if it contains all the variables

• It is parsimonious if removing any term from the candidate makes it inadequate.

3 For the formula ∀x. p1(x) ∨ · · · ∨ pn(x) we have:

• Trigger heads: {p1(x), . . . , pn(x)}
• 2n adequate candidates

• n which are parsimonious: the singletons {p1(x)}, . . . , {pn(x)}.
4 Remaining candidates ordered by specificity:

• T1 is less specific than T2 if and only if all matchings of T2 are also matchings for T1

• For each t in T1 there is a trigger head t′ in T2 such that t matches t′, i.e. there is a substitution σ such

that tσ = t′.

5 Finally, the possible triggers for the quantified formula are the minimal candidates. 14

Trigger-based instantiation issues: matching loops

• A well known issue is matching loops: terms from previous instantiation rounds leading to more

instantiations indefinitely

• consider E = {a ≃ f(a), . . . } and Q = {∀x. f(f(x)) ≃ f(x)}. What happens if the trigger is

{f(x)}?

• E = {a ≃ f(a), f(a) ≃ f(f(a)), . . . }
• E = {a ≃ f(a), f(a) ≃ f(f(a)), f(f(a)) ≃ f(f(f(a))), . . . }

• Some approaches introduced to address this issue, but they have limited application:

• Select triggers such that they are not subterms of other terms in the formula [LP16]

• Ignore during instantiation terms from instances that did not lead to conflicts [Bar16; MB07]

15

Trigger-based instantiation issues: matching loops

• A well known issue is matching loops: terms from previous instantiation rounds leading to more

instantiations indefinitely

• consider E = {a ≃ f(a), . . . } and Q = {∀x. f(f(x)) ≃ f(x)}. What happens if the trigger is

{f(x)}?
• E = {a ≃ f(a), f(a) ≃ f(f(a)), . . . }

• E = {a ≃ f(a), f(a) ≃ f(f(a)), f(f(a)) ≃ f(f(f(a))), . . . }

• Some approaches introduced to address this issue, but they have limited application:

• Select triggers such that they are not subterms of other terms in the formula [LP16]

• Ignore during instantiation terms from instances that did not lead to conflicts [Bar16; MB07]

15

Trigger-based instantiation issues: matching loops

• A well known issue is matching loops: terms from previous instantiation rounds leading to more

instantiations indefinitely

• consider E = {a ≃ f(a), . . . } and Q = {∀x. f(f(x)) ≃ f(x)}. What happens if the trigger is

{f(x)}?
• E = {a ≃ f(a), f(a) ≃ f(f(a)), . . . }
• E = {a ≃ f(a), f(a) ≃ f(f(a)), f(f(a)) ≃ f(f(f(a))), . . . }

• Some approaches introduced to address this issue, but they have limited application:

• Select triggers such that they are not subterms of other terms in the formula [LP16]

• Ignore during instantiation terms from instances that did not lead to conflicts [Bar16; MB07]

15

Trigger-based instantiation issues: matching loops

• A well known issue is matching loops: terms from previous instantiation rounds leading to more

instantiations indefinitely

• consider E = {a ≃ f(a), . . . } and Q = {∀x. f(f(x)) ≃ f(x)}. What happens if the trigger is

{f(x)}?
• E = {a ≃ f(a), f(a) ≃ f(f(a)), . . . }
• E = {a ≃ f(a), f(a) ≃ f(f(a)), f(f(a)) ≃ f(f(f(a))), . . . }

• Some approaches introduced to address this issue, but they have limited application:

• Select triggers such that they are not subterms of other terms in the formula [LP16]

• Ignore during instantiation terms from instances that did not lead to conflicts [Bar16; MB07]

15

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

16

Goal-oriented instantiation

Check consistency of E ∪ Q

⊕ Only instances refuting the current model are generated

If {f(a) ≃ f(c), g(b) ̸≃ h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)→ f(a) ̸≃ f(c) ∨ g(b) ≃ h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

17

Goal-oriented instantiation

Check consistency of E ∪ Q

⊕ Only instances refuting the current model are generated

If {f(a) ≃ f(c), g(b) ̸≃ h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)→ f(a) ̸≃ f(c) ∨ g(b) ≃ h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

17

Goal-oriented instantiation

Check consistency of E ∪ Q

⊕ Only instances refuting the current model are generated

If {f(a) ≃ f(c), g(b) ̸≃ h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)→ f(a) ̸≃ f(c) ∨ g(b) ≃ h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

17

Goal-oriented instantiation

Check consistency of E ∪ Q

⊕ Only instances refuting the current model are generated

If {f(a) ≃ f(c), g(b) ̸≃ h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)→ f(a) ̸≃ f(c) ∨ g(b) ≃ h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

17

Goal-oriented instantiation

Check consistency of E ∪ Q

⊕ Only instances refuting the current model are generated

If {f(a) ≃ f(c), g(b) ̸≃ h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)→ f(a) ̸≃ f(c) ∨ g(b) ≃ h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

17

Goal-oriented instantiation

Check consistency of E ∪ Q

⊕ Only instances refuting the current model are generated

If {f(a) ≃ f(c), g(b) ̸≃ h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)→ f(a) ̸≃ f(c) ∨ g(b) ≃ h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

17

Instantiation strategies: conflict-based [Reynolds et al. FMCAD’14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that make E

unsatisfiable

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Since E, P (b) ∨R(b) |= ⊥, this strategy will return {{x 7→ b}}.

• Formally:

c(E, ∀x̄. φ): 1. Either return {σ} where E, φσ |= ⊥, or return ∅.

18

Instantiation strategies: conflict-based [Reynolds et al. FMCAD’14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that make E

unsatisfiable

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Since E, P (b) ∨R(b) |= ⊥, this strategy will return {{x 7→ b}}.

• Formally:

c(E, ∀x̄. φ): 1. Either return {σ} where E, φσ |= ⊥, or return ∅.

18

Impact of conflict-based instantiation [Reynolds et al. FMCAD’14]

* experiments across 12468 benchmarks from TPTP, SMT-LIB, and Sledghammer. 19

Impact of conflict-based instantiation [BFR17]

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

• Improvements on CVC4 came from discarding from trigger-based strategy instances already entailed by the formula: if

E |= φ[t̄], for ∀x. φ[x].

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks annotated as unsatisfiable, with 30s timeout.
20

Caveats of conflct-based instantiation

• The search for the instantiations in practice is more expensive

• The technique is inherently incomplete: it only considers a single formula at a time

• E = {p(a)} and Q = {∀x. q(x), ∀yz. ¬q(y) ∨ ¬p(z)}.
There are no substitutions σ, ρ such that E |= ¬q(x)σ or E |= q(y)ρ ∧ p(z)ρ, even though E ∪ Q is

clearly inconsistent.

• It should be seen as a complement to other techniques that are more general

21

Instantiation strategies: model-based [Ge and de Moura CAV’09]

Model-based instantiation (MBQI): build a candidate model for E ∪ Q and instantiate with

counter-examples from model checking

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Assume that PM = λx. ite(x ≃ c, ⊤, ⊥) and RM = λx.⊥.

• SinceM ̸|= P (a) ∨R(a), this strategy may return {{x 7→ a}}.

• Formally:

m(E, ∀x̄. φ): 1. Construct a modelM for E.

2. Return {{x̄ 7→ t̄ }} where t̄ ∈ T(E) andM ̸|= φ{x̄ 7→ t̄ },
or ∅ if none exists.

22

Instantiation strategies: model-based [Ge and de Moura CAV’09]

Model-based instantiation (MBQI): build a candidate model for E ∪ Q and instantiate with

counter-examples from model checking

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Assume that PM = λx. ite(x ≃ c, ⊤, ⊥) and RM = λx.⊥.

• SinceM ̸|= P (a) ∨R(a), this strategy may return {{x 7→ a}}.

• Formally:

m(E, ∀x̄. φ): 1. Construct a modelM for E.

2. Return {{x̄ 7→ t̄ }} where t̄ ∈ T(E) andM ̸|= φ{x̄ 7→ t̄ },
or ∅ if none exists.

22

Instantiation strategies: model-based [Ge and de Moura CAV’09]

• MBQI is complete for a number of fragments

• Bernays-Schönfinkel

• Essentially Uninterpreted Formulas: “theory variables” only appear as arguments of uninterpreted

functions

• It is a good strategy to complement incomplete techniques

• One should note that by its nature it is generally more successful on satisfiable problems

23

A unifying framework for classic

instantiation techniques

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}
f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}
f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}
f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}
f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}
f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}
f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ≃ f(c), g(b) ̸≃ h(c)}, Q = {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}
f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}

24

E-ground (dis)unification [BFR17]

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t.

E |= Lσ

• Solution space can be restricted into ground terms from E ∪ L

• NP-complete

• NP: solutions can checked in polynomial time

• NP-hard: reduction of 3-SAT into the entailment

• Variant of classic (non-simultaneous) rigid E-unification

s1σ ≃ t1σ, . . . , snσ ≃ tnσ |= uσ ≃ vσ

25

Casting instantiation techniques: Trigger-based

E |= (u1 ≃ y1 ∧ · · · ∧ um ≃ ym)σ

where {u1, . . . , um} is a trigger for ∀x̄. ψ ∈ Q and each yiσ ∈ T(E)

• • E = {f(a) ≃ g(b), h(a) ≃ b, f(a) ≃ f(c)}
• Q = {∀x. f(x) ̸≃ g(h(x))}, Trigger={f(x)}

• Solving E |= (f(x) ≃ y)σ yields

• σ1 = {y 7→ f(a), x 7→ a}
• σ2 = {y 7→ f(c), x 7→ c}

• The instantiation lemmas are:

• ∀x. f(x) ̸≃ g(h(x)) → f(a) ̸≃ g(h(a))

• ∀x. f(x) ̸≃ g(h(x)) → f(c) ̸≃ g(h(c))

26

Casting instantiation techniques: Conflict-based

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

• Consider

• E = {f(a) ≃ g(b), h(a) ≃ b, f(a) ≃ f(c)}
• Q = {∀x. f(x) ̸≃ g(h(x))}

• Solving E |= (f(x) ≃ g(h(x)))σ yields

• σ = {x 7→ a}

• The instantiation lemma is:

• ∀x. f(x) ̸≃ g(h(x)) → f(a) ̸≃ g(h(a))

27

Casting instantiation techniques: Model-based

Etot |= ¬ψσ, for some ∀x̄. ψ ∈ Q

where Etot is a total extension of E s.t.:

▶ ground terms not in E necessary for evaluating Q are added

▶ all terms in T(E) not asserted equal are made disequal

• Consider

• E = {f(a) ≃ g(b), h(a) ≃ b}
• Q = {∀x. f(x) ̸≃ g(x), ∀xy. ψ}, e = a as a default value, and

Etot = E ∪ {a ̸≃ b, a ̸≃ f(a), b ̸≃ f(a)}
∪ {f(b) ≃ f(a), f(f(a)) ≃ f(a), g(a) ≃ a, g(f(a)) ≃ a} ∪ {. . . }

• Solving {. . . , f(a) ≃ g(b), f(b) ≃ f(a), . . . } |= f(x) ≃ g(x)σ yields

• σ = {x 7→ b}
• The lemma ∀x. f(x) ̸≃ g(x)→ f(a) ̸≃ g(a) prevents the same Etot

28

How to solve the E-ground (dis)unification problem?

Entailment conditions:

• E |= (x ≃ y)σ

• xσ = yσ or

• some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

• some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

• xσ = f(s1, . . . , sn)σ or

• some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (f(u1, . . . , un) ≃ g(v1, . . . , vn))σ and

• f = g and E |= u1σ ≃ v1σ, . . . , E |= unσ ≃ vnσ or

• some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and g(v1, . . . , vn)σ ∈ [t2]

• E |= (u ̸≃ v)σ

• some t1, t2 ∈ T(E) s.t. E |= t1 ̸≃ t2, uσ ∈ [t1], and vσ ∈ [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

• E |= (x ≃ y)σ

• xσ = yσ or

• some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

• some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

• xσ = f(s1, . . . , sn)σ or

• some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (f(u1, . . . , un) ≃ g(v1, . . . , vn))σ and

• f = g and E |= u1σ ≃ v1σ, . . . , E |= unσ ≃ vnσ or

• some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and g(v1, . . . , vn)σ ∈ [t2]

• E |= (u ̸≃ v)σ

• some t1, t2 ∈ T(E) s.t. E |= t1 ̸≃ t2, uσ ∈ [t1], and vσ ∈ [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

• E |= (x ≃ y)σ

• xσ = yσ or

• some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

• some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

• xσ = f(s1, . . . , sn)σ or

• some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (f(u1, . . . , un) ≃ g(v1, . . . , vn))σ and

• f = g and E |= u1σ ≃ v1σ, . . . , E |= unσ ≃ vnσ or

• some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and g(v1, . . . , vn)σ ∈ [t2]

• E |= (u ̸≃ v)σ

• some t1, t2 ∈ T(E) s.t. E |= t1 ̸≃ t2, uσ ∈ [t1], and vσ ∈ [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

• E |= (x ≃ y)σ

• xσ = yσ or

• some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

• some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

• xσ = f(s1, . . . , sn)σ or

• some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (f(u1, . . . , un) ≃ g(v1, . . . , vn))σ and

• f = g and E |= u1σ ≃ v1σ, . . . , E |= unσ ≃ vnσ or

• some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and g(v1, . . . , vn)σ ∈ [t2]

• E |= (u ̸≃ v)σ

• some t1, t2 ∈ T(E) s.t. E |= t1 ̸≃ t2, uσ ∈ [t1], and vσ ∈ [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

• E |= (x ≃ y)σ

• xσ = yσ or

• some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

• some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

• xσ = f(s1, . . . , sn)σ or

• some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (f(u1, . . . , un) ≃ g(v1, . . . , vn))σ and

• f = g and E |= u1σ ≃ v1σ, . . . , E |= unσ ≃ vnσ or

• some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and g(v1, . . . , vn)σ ∈ [t2]

• E |= (u ̸≃ v)σ

• some t1, t2 ∈ T(E) s.t. E |= t1 ̸≃ t2, uσ ∈ [t1], and vσ ∈ [t2]

29

Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and terminating calculus for

solving E-ground (dis)unification

⊕ (allows for) Goal-oriented instantiation technique

⊕ Efficient

⊖ Ad-hoc Versatile framework, recasting many instantiation techniques as a CCFV problem

30

Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅

31

Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅

31

Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅

31

Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅

31

Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅

31

Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅

31

Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅

31

Implementation

• Model minimization

• Relevancy

• Prime implicant

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

• Top symbol indexing of E-graph from ground congruence closure

f →


f([t1], . . . , [tn])

. . .

f([t′1], . . . , [t
′
n])

• E |= f(x)σ ≃ t only if [t] contains some f(t′)

E |= f(x)σ ≃ g(y)σ only if some [t] contains some f(t′) and some g(t′′)

• Bitmasks for fast checking if symbol has applications in congruence class

• Mapping from congruence class to classes it’s disequal to

32

Implementation

• Selection strategies

E |= f(x, y) ≃ h(z) ∧ x ≃ t ∧ . . .

• Eagerly checking whether constraints can be discarded

• After assigning x to t, the remaining problem is normalized

E |= f(t, y) ≃ h(z) ∧ . . .

• E |= f(t, y)σ ≃ h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ≃ t′

33

Effective enumerative

instantiation

Instantiation and the Herbrand Theorem

• The earliest theorem provers relied on Herbrand instantiation

• Instantiate with all possible terms in the Herbrand universe (all possible well-sorted ground terms in the

formula’s signature)

• Enumerating all instances is unfeasible in practice!

• Enumerative instantiation was then discarded

But enumerative instantiation can be effective for state-of-the-art SMT

• strengthened version of the Herbrand theorem

• efficient implementation techniques

34

Instantiation and the Herbrand Theorem

• The earliest theorem provers relied on Herbrand instantiation

• Instantiate with all possible terms in the Herbrand universe (all possible well-sorted ground terms in the

formula’s signature)

• Enumerating all instances is unfeasible in practice!

• Enumerative instantiation was then discarded

But enumerative instantiation can be effective for state-of-the-art SMT

• strengthened version of the Herbrand theorem

• efficient implementation techniques

34

Theorem (Strengthened Herbrand [Kan63; RBF18])

If there exists an infinite series of finite satisfiable sets of ground literals Ei and of finite sets of

ground instances Qi of Q such that

• Qi =
{
φσ | ∀x̄. φ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T(Ei)

}
;

• E0 = E, Ei+1 |= Ei ∪ Qi;

then E ∪ Q is satisfiable in the empty theory with equality.

Direct application at

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

• Quantifier-free solver enumerates assignments E ∪ Q

• Instantiation module generates instances of Q
35

Enumerative instantiation

u(E, ∀x̄. φ):
1. Choose an ordering ⪯ on tuples of quantifier-free terms.

2. Return {{x̄ 7→ t̄}} where t̄ is a minimal tuple of terms w.r.t ⪯,
such that t̄ ∈ T(E) and E ̸|= φ{x̄ 7→ t̄ }, or ∅ if none exist.

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• u chooses an ordering on tuples of terms, say the lexicographic extension of ⪯ where a ≺ b ≺ c.

• Since E does not entail P (a) ∨R(a), this strategy returns {{x 7→ a}}.

36

u as an alternative for m

• Enumerative instantiation plays a similar role to MBQI

• It can also serve as a “completeness fallback” to c and e

• However, u has advantages over m for UNSAT problems

• Moreover it is significantly simpler to implement

• No model building

• No model checking

37

Example

E = {¬P (a), R(b), S(c)}
Q = {∀x. R(x) ∨ S(x), ∀x. ¬R(x) ∨ P (x), ∀x. ¬S(x) ∨ P (x)}

M =


PM = λx.⊥,
RM = λx. ite(x ≃ b, ⊤, ⊥),

SM = λx. ite(x ≃ c, ⊤, ⊥)

 , a ≺ b ≺ c

φ x s.t. M ̸|= φ x s.t. E ̸|= φ m(E,∀x. φ) u(E, ∀x. φ)
R(x) ∨ S(x) a a {{x 7→ a}} {{x 7→ a}}
¬R(x) ∨ P (x) b a, b, c {{x 7→ b}} {{x 7→ a}}
¬S(x) ∨ P (x) c a, b, c {{x 7→ c}} {{x 7→ a}}

• u instantiates uniformly so that new terms are introduced less often

• m instantiates depending on how model was built

• Moreover, u leads to E ∧ Q{x 7→ a} |= ⊥
• m requires considering E′ which satisfies E along the new instances

38

Implementation

Implementing enumerative instantiation efficiently depends on:

• Restricting enumeration space

• Avoiding entailed instantiations

• Term ordering to introduce new terms less often

39

CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102
C

PU
tim

e
(s

)
e+u
e;u
e+m
e;m
e
u
m

• 42 065 benchmarks, being 14 731 from TPTP and 27 334 from SMT-LIB

• e+u stands for “interleave e and u”, while e;u for “apply e first, then u if it fails”

• All CVC4 configurations have “c;” as prefix

40

Impact of u on satisfiable benchmarks

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829

UF 7293 39 42 42 0 70 69 65

Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161

• As expected, m greatly outperforms u

• Nevertheless u answers SAT half as often as m in empty theory

• Moreover, u solves 13 problems m does not

41

Impact of u on unsatisfiable benchmarks

• u solves 3 043 more benchmarks than m

• u solves 1 737 problems not solvable by e

• Combinations of e with u or m lead to significant gains

• e+u is best configuration, solving 253 more problems than e+m and 1 295 more than e

• Some benchmark families only solvable due to enumeration

• Overall the enumerative strategies lead to a virtual portfolio of CVC4 solving 712 more problems

42

Comparison against other instantiation-based SMT solvers

6000 8000 10000 12000 14000 16000 18000 20000 22000
10−1

100

101

102
C

PU
tim

e
(s

)
uport-i
mport-i
z3 mport-i
e
z3 e

• Portfolios run without interleaving strategies (not supported by Z3)

• Z3 uses several optimizations for e not implemented in CVC4

• Z3 does not implement c

43

Restricting Enumeration Space

• Strengthened Herbrand Theorem allows restriction to T(E)

• Sort inference [CS03] reduces instantiation space by computing more precise sort information

• E ∪ Q = {a ̸≃ b, f(a) ≃ c} ∪ {P (f(x))}
• a, b, c, x : τ

• f : τ → τ and P : τ → Bool.

• This is equivalent to Es ∪ Qs = {a1 ̸≃ b1, f12(a1) ≃ c2} ∪ {P2(f12(x1))}
• a1, b1, x1 : τ1
• c2 : τ2
• f12 : τ1 → τ2 and P : τ2 → Bool

• u would derive e.g. {x 7→ c} for E ∪ Q, while for Es ∪ Qs the instantiation {x1 7→ c2} is not well-sorted.

44

Term Ordering

Instantiations are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if


maxn

i=1 ti ≺ maxn
i=1 si, or

maxn
i=1 ti = maxn

i=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order ⪯ on ground terms.

If a ≺ b ≺ c, then
(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c, b) ≺ (c, c)

• We consider instantiations with c only after considering all cases with a and b

• Goal is to introduce new terms less often

• Order on T(E) fixed for finite set of terms t1 ≺ . . . ≺ tn
• Instantiate in order with t1, . . . , tn

• Then choose new non-congruent term t ∈ T(E) and have tn ≺ t
45

Fair and Adventurous Enumeration of Quantifier Instantiations [JBFR21]

• Recently we tried a number of different orderings for tuples

• Significant orthogonality, no clear winner

• In the process we improved the generation of instances in u to remove redundant tuples

• A subset of the tuple is enough to lead to an entailed instance

• A subset of the tuple is enough to lead an equivalent, modulo rewriting, instance

• UF, UFLIA, and UFNIA, totaling 31314 problems
46

So what quantifier handling

techniques do I use if I have a

quantified SMT problem?

A flowchat to pick quantifier handling strategies, at least in cvc5

(courtesy of Andy Reynolds)

47

Conclusion

• SMT solvers mainly use instantiation techniques to handle quantified formulas

• They are often incomplete, slow, or fragile

• But they also enable many successful use cases in e.g. software verification and automation for proof

assistants

• There are many options, ask developers.

48

An introduction to SMT solving with quantifiers

Haniel Barbosa, Universidade Federal de Minas Gerais

SAT/SMT/AR Summer School

2024–06–27, LORIA–Inria, Université de Lorraine, Nancy, FR

CCFV calculus

Eσ ⊩E x ̸≃ y ∧ C
Dvar

Eσ ⊩E

∨
[t], [t′]∈Ecc, E|=t ̸≃t′

(x ≃ t ∧ y ≃ t
′ ∧ C)

Eσ ⊩E x ̸≃ f(s̄) ∧ C
Dfapp

Eσ ⊩E

∨
[t], [t′]∈Ecc,

E|=t ̸≃t′, f(t̄′)∈[t′]

(x ≃ t ∧ s1 ≃ t
′
1 ∧ · · · ∧ sn ≃ t

′
n ∧ C)

Eσ ⊩E f(ū) ̸≃ g(s̄m) ∧ C
Dgen

Eσ ⊩E

∨
[t], [t′]∈Ecc, E|=t ̸≃t′,
f(t̄)∈[t], g(t̄′m)∈[t′]

(
u1 ≃ t1 ∧ · · · ∧ un ≃ tn ∧
s1 ≃ t′1 ∧ · · · ∧ sm ≃ t′m ∧ C

)

Eσ ⊩E C1 ∨ C2

Split
Eσ ⊩E C1 Eσ ⊩E C2

Eσ ⊩E ℓ ∧ C
Yield if E |= ℓ

Eσ ⊩E C

Eσ ⊩E ℓ ∧ C
Fail

Eσ ⊩E ⊥
if ℓ is ground and E ̸|= ℓ

49

References i

References

[ABJ+13] Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, et al. “Syntax-guided synthesis”. In:

Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2013, pp. 1–8.

[Bar16] Haniel Barbosa. “Efficient Instantiation Techniques in SMT (Work In Progress)”. In:

Practical Aspects of Automated Reasoning (PAAR). Ed. by Pascal Fontaine, Stephan Schulz, and Josef Urban. Vol. 1635.

CEUR Workshop Proceedings. CEUR-WS.org, 2016, pp. 1–10.

[BFR17] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. “Congruence Closure with Free Variables”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II. Ed. by Axel Legay and Tiziana Margaria.

Vol. 10206. Lecture Notes in Computer Science. 2017, pp. 214–230.

[BJ15] Nikolaj Bjørner and Mikolas Janota. “Playing with Quantified Satisfaction”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Ansgar Fehnker, Annabelle McIver,

Geoff Sutcliffe, et al. Vol. 35. EPiC Series in Computing. EasyChair, 2015, pp. 15–27.

[Bjø10] Nikolaj Bjørner. “Linear Quantifier Elimination as an Abstract Decision Procedure”. In:

International Joint Conference on Automated Reasoning (IJCAR). Ed. by Jürgen Giesl and Reiner Hähnle. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 316–330.

References ii

[BKPU16] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, et al. “Hammering towards QED”. In:

J. Formalized Reasoning 9.1 (2016), pp. 101–148.

[BR15] Peter Backeman and Philipp Rümmer. “Theorem Proving with Bounded Rigid E-Unification”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in

Computer Science. Springer, 2015.

[CS03] Koen Claessen and Niklas Sörensson. “New Techniques that Improve MACE-style Finite Model Finding”. In:

Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications. 2003.

[DCKP13] Claire Dross, Sylvain Conchon, Johannes Kanig, et al. “Adding Decision Procedures to SMT Solvers using Axioms with

Triggers”. 2013.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for Program Checking”. In: J. ACM 52.3

(2005), pp. 365–473.

[GM09] Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories”. In:

Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes in Computer

Science. Springer, 2009, pp. 306–320.

[JBFR21] Mikolás Janota, Haniel Barbosa, Pascal Fontaine, et al. “Fair and Adventurous Enumeration of Quantifier Instantiations”.

In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2021, pp. 256–260.

References iii

[Kan63] Stig Kanger. “A Simplified Proof Method for Elementary Logic”. In: Computer Programming and Formal Systems. Ed. by

P. Braffort and D. Hirschberg. Vol. 35. Studies in Logic and the Foundations of Mathematics. Elsevier, 1963, pp. 87 –94.

[KV13] Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”. English. In:

Computer Aided Verification (CAV). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2013, pp. 1–35.

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Correctness”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Edmund M. Clarke and Andrei Voronkov.

Vol. 6355. Lecture Notes in Computer Science. Springer, 2010, pp. 348–370.

[LHC+23] Andrea Lattuada, Travis Hance, Chanhee Cho, et al. “Verus: Verifying Rust Programs using Linear Ghost Types”. In:

Proc. ACM Program. Lang. 7.OOPSLA1 (2023), pp. 286–315.

[LP16] K. Rustan M. Leino and Clément Pit-Claudel. “Trigger Selection Strategies to Stabilize Program Verifiers”. In:

Computer Aided Verification (CAV). Ed. by Swarat Chaudhuri and Azadeh Farzan. Vol. 9779. Lecture Notes in Computer

Science. Springer, 2016, pp. 361–381.

[MB07] Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning. Vol. 4603. Lecture Notes in Computer Science.

Springer, 2007, pp. 183–198.

References iv

[Mon10] David Monniaux. “Quantifier Elimination by Lazy Model Enumeration”. In: Computer Aided Verification (CAV). Ed. by

Tayssir Touili, Byron Cook, and Paul B. Jackson. Vol. 6174. Lecture Notes in Computer Science. Springer, 2010,

pp. 585–599.

[NPR+21] Aina Niemetz, Mathias Preiner, Andrew Reynolds, et al. “Syntax-Guided Quantifier Instantiation”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II. Ed. by Jan Friso Groote and

Kim Guldstrand Larsen. Vol. 12652. Lecture Notes in Computer Science. Springer, 2021, pp. 145–163.

[Ott08] Jens Otten. “leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic

(System Descriptions)”. English. In: Automated Reasoning. Ed. by Alessandro Armando, Peter Baumgartner, and

Gilles Dowek. Vol. 5195. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 283–291.

[RBF18] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. “Revisiting Enumerative Instantiation”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II. Ed. by Dirk Beyer and Marieke Huisman.

Vol. 10806. Lecture Notes in Computer Science. Springer, 2018, pp. 112–131.

[RBN+19] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, et al. “cvc4sy: Smart and Fast Term Enumeration for Syntax-Guided

Synthesis”. In: Computer Aided Verification (CAV), Part II. Ed. by Isil Dillig and Serdar Tasiran. Vol. 11562. Lecture Notes

in Computer Science. Cham: Springer International Publishing, 2019, pp. 74–83.

[RDK+15] Andrew Reynolds, Morgan Deters, Viktor Kuncak, et al. “Counterexample-Guided Quantifier Instantiation for Synthesis in

SMT”. In: Computer Aided Verification (CAV). Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9207. Lecture Notes

in Computer Science. Springer, 2015, pp. 198–216.

References v

[RTG+13] Andrew Reynolds, Cesare Tinelli, Amit Goel, et al. “Quantifier Instantiation Techniques for Finite Model Finding in SMT”.

In: Proc. Conference on Automated Deduction (CADE). Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in

Computer Science. Springer, 2013, pp. 377–391.

[RTM14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. “Finding conflicting instances of quantified formulas in

SMT”. In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195–202.

[SCV19] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. “Faster, Higher, Stronger: E 2.3”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Pascal Fontaine. Vol. 11716. Lecture Notes in Computer

Science. Springer, 2019, pp. 495–507.

	A unifying framework for classic instantiation techniques
	Effective enumerative instantiation
	So what quantifier handling techniques do I use if I have a quantified SMT problem?
	References

