An introduction to SMT solving with quantifiers

Haniel Barbosa, Universidade Federal de Minas Gerais

UFMmMG

SAT/SMT /AR Summer School
2024-06-27, LORIA-Inria, Université de Lorraine, Nancy, FR

What are quantifiers for in SMT?

e An overview of classic instantiation techniques
e Trigger-based instantiation
e Conflict-based instantiation

e Model-based instantiation

A unifying framework for classic instantiation techniques

Effective enumerative instantiation

Playing with different instantiation techniques

Why do we need quantifiers?

e We've just seen how powerful and flexible SMT solvers are.
e The efficiency of SMT solvers comes from dedicated decision procedures for their theories.

e But what if the problem you want to solve does not fit existing theories?

(set-logic UF)

(declare-sort U 0)
(declare-fun £ (U U) U)
(declare-const a U)
(declare-const b U)

(assert (not (= (f a b) (f b a))))

(check-sat)

(set-logic UF)

(declare-sort U 0)
(declare-fun £ (U U) U)
(declare-const a U)
(declare-const b U)

(assert (not (= (f a b) (f b a))))

(check-sat)

(set-logic UF)

(declare-sort U 0)

(declare-fun £ (U U) U)
(declare-const a U)

(declare-const b U)

(assert (not (= (f a b) (f b a))))

(assert (forall ((x U) (y) (= (£ xy) (f y x))))

(check-sat)

Quantifiers are important for many applications

e Automatic theorem proving

e Adding axioms for new symbols (tools such Sledghammer [BKPU16])
e Software verification

e Encoding contracts (tools such as Dafny [Leil0] and Verus [LHC+23] rely heavily on quantifiers)
e Function synthesis

e Specifying the behavior of a function to synthesize [ABJ+13; RBN+19]

Quantifiers are important for many applications

e Automatic theorem proving
e Adding axioms for new symbols (tools such Sledghammer [BKPU16])
e Software verification
e Encoding contracts (tools such as Dafny [Leil0] and Verus [LHC+23] rely heavily on quantifiers)
e Function synthesis
e Specifying the behavior of a function to synthesize [ABJ+13; RBN+19]
e Unfortunately, adding quantifiers leads to several complications.

e Undecidable in general
e Explosive heuristics

e Users want it to work as well as on quantifier-free problems

Quantifiers are important for many applications

e Automatic theorem proving
e Adding axioms for new symbols (tools such Sledghammer [BKPU16])
e Software verification

e Encoding contracts (tools such as Dafny [Leil0] and Verus [LHC+23] rely heavily on quantifiers)

Function synthesis

e Specifying the behavior of a function to synthesize [ABJ+13; RBN+19]

Unfortunately, adding quantifiers leads to several complications.

e Undecidable in general
e Explosive heuristics

e Users want it to work as well as on quantifier-free problems

e But as we will see today, state-of-the-art solvers do well with quantifiers in practice

Satisfiability Modulo Theories (SMT)

t o= x| ft,...,0)
o u= plt,...)| @|leVe|Vrr...zh @
Given a formula ¢ in FOL and background theories 71, ..., 7y, finding a model M giving an
interpretation to all terms and predicates such that M =7, . 7. ¢.

First-order formulas in CNF:

e Quantified formulas can be classified as strong and weak quantifiers, which means to occur in a
negative (e.g., under a single negation) or positive context.
e |t is sound to Skolemize strong quantifiers:
Jz. p[z]
olk]
e If Skolemization is done under other quantifiers, the introduced function must take the respective
quantified variables as arguments.

where k is a fresh function symbol

Yy. Jz. p(a,y)
Vy. p(f(y),y)

CDCL(T) architecture

SMT formula

Formula processing

ISMT solver

Quantifier-free SMT solver

Conflict clause

SAT solver

Boolean Model /

(SAT (model))/& UNSAT (proof/core))

Quantifier-free solver enumerates models E

e F is a set of ground literals {a<bb<atz, =0, fla) 2 f(b)}

CDCL(T) architecture

SMT formula

Formula processing

ISMT solver
Quantifier-free SMT solver

Instantiation

oommosa

(SAT (model))& UNSAT (proof/core))

Quantifier-free solver enumerates models £ U Q

e F is a set of ground literals {a<bb<atz, =0, fla) 2 f(b)}
{Vayz. f(z) £ f(2) V g(y) ~ h(2)}

e Q is a set of quantified clauses

Instantiation module generates instances of Q f(a) % £(b) V g(a) ~ h(b)

The abstract procedure: ground case

function CHECKSAT(p, T) is
© < PROCESS(y) // Simplifications, CNF transformation
do
E <+ CHECKBOOLEAN(abs(y)) // SAT solver
if £ = @ then
return UNSAT

C' < CHECKGROUND(E, T) // Theory solvers
p+—pul

while C # @

return SAT

The abstract procedure: quantified case

function CHECKSATQ(p, T) is

¢ < PROCESS(p) // Simplifications, CNF transformation
do
(E, Q) < CHECKBOOLEAN(absQ(¢p)) // SAT solver

if FUQ = & then
return UNSAT

C' < CHECKGROUND(E, T) // Theory solvers
if C # @ then

p+—puC

continue

I+ INsT(E, O, T) // Instantiation module
e+ Ul
while T £ &
if models can be built for 7 then
return SAT
else
return UNKNOWN

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable
set of its instances.

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable
set of its instances.

Is the following syllogism correct? Translate to FOL

All humans are mortal
All Greeks are humans

Then all Greeks are mortal

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable
set of its instances.

Is the following syllogism correct? Translate to FOL
All humans are mortal Va. H(x) — M(x)
All Greeks are humans Vz.G(z) — H(z)
Then all Greeks are mortal Vz.G(z) = M(z)

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable
set of its instances.

Is the following syllogism correct? Translate to FOL
All humans are mortal Va. H(x) — M(x)
All Greeks are humans Vz.G(z) — H(z)
Then all Greeks are mortal Vz.G(z) = M(z)

e Checking the validity of this formula:
((Vm. H(z) = M(z)) A (Vz.G(z) — H(x))) — Vz.G(xz) = M(z)

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable
set of its instances.

Is the following syllogism correct? Translate to FOL
All humans are mortal Va. H(x) — M(x)
All Greeks are humans Vz.G(z) — H(z)
Then all Greeks are mortal Vz.G(z) = M(z)

e Checking the validity of this formula:

((Vm. H(z) = M(z)) A (Vz.G(z) — H(x))) — Vz.G(xz) = M(z)
e Checking the unsatisfiability of:

Vo. H(x) = M(z),Vz. G(z) = H(z),~(Vz. G(z) = M(x))

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable
set of its instances.

Is the following syllogism correct? Translate to FOL
All humans are mortal Va. H(x) — M(x)
All Greeks are humans Vz.G(z) — H(z)
Then all Greeks are mortal Vz.G(z) = M(z)

e Checking the validity of this formula:

((Vm. H(z) = M(z)) A (Vz.G(z) — H(x))) — Vz.G(xz) = M(z)
e Checking the unsatisfiability of:

Vo. H(x) = M(z),Vz. G(z) = H(z),~(Vz. G(z) = M(x))
e Skolemize: V. H(z) — M(x),Vx.G(z) — H(x),G(s), "M (s)

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable
set of its instances.

Is the following syllogism correct? Translate to FOL
All humans are mortal Va. H(x) — M(x)
All Greeks are humans Vz.G(z) — H(z)
Then all Greeks are mortal Vz.G(z) = M(z)

e Checking the validity of this formula:
((Vm. H(z) = M(z)) A (Vz.G(z) — H(x))) — Vz.G(xz) = M(z)
e Checking the unsatisfiability of:
Vo. H(x) = M(z),Vz. G(z) = H(z),~(Vz. G(z) = M(x))
e Skolemize: V. H(z) — M(x),Vx.G(z) — H(x),G(s), "M (s)
e Instantiate: add the two formulas H(s) — M (s), G(s) — H(s)

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct? Translate to FOL
All humans are mortal Va. H(x) — M(x)
All Greeks are humans Vz.G(z) — H(z)
Then all Greeks are mortal Vz.G(z) = M(z)

e Checking the validity of this formula:

((Vm. H(z) = M(z)) A (Vz.G(z) — H(x))) — Vz.G(xz) = M(z)
e Checking the unsatisfiability of:

Vo. H(x) = M(z),Vz. G(z) = H(z),~(Vz. G(z) = M(x))
e Skolemize: V. H(z) — M(x),Vx.G(z) — H(x),G(s), "M (s)
Instantiate: add the two formulas H(s) — M (s), G(s) — H(s)

A ground SMT solver will deduce unsatisfiability. 9

Instantiation is not the only way to reason about first-order logic

e Superposition-based, tableaux-based systems are well-established theorem provers
e Vampire [KV13], E [SCV1Y9], ...
e Princess [BR15], LeanCop [Ott08], ...

e The focus on instantiation in SMT can be explained by how it makes “quantifier reasoning” simulate
how the other theory solvers work, which is well-suited for the CDCL(T) architecture.

10

Instantiation techniques

e Trigger-based e Enumerative e QE-based [Mon10; Bj#10; RDK+15; BJ15]

; RBF18 .. .
[P Ll=0w | [| @ Decision procedures available

e Conflict-based @ Easy to implement © Pure fragments
[RTM14; BFR17]

e Model-based
[GMO09; RTG+13]

Reliable last t
@ Reliable last resor e Syntax-Guided Synthesis

(SyGuS)-based [NPR+-21]

@ Covers pure theories where QE is not
@ General: V4+-EUF+... easily available

© Finding instantiations is hard O Very expensive

11

Instantiation techniques

o Trigger-based
[DNS05; MB07]

e Conflict-based
[RTM14; BFR17]

e Model-based
[GMO09; RTG+13]

@ General: V+EUF+...

© Finding instantiations is hard

e Enumerative
[RBF18]

@ Easy to implement

@ Reliable last resort

QE-based [Mon10; Bjg10; RDK+-15; BJ15]

Decision procedures available

Pure fragments

Syntax-Guided Synthesis
(SyGuS)-based [NPR+-21]

Covers pure theories where QE is not

easily available

S Very expensive

11

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of
triggers and E-matching

e A trigger is a set of terms whose free variables should cover the respective quantified variables.

12

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of
triggers and F-matching

e A trigger is a set of terms whose free variables should cover the respective quantified variables.

e E={-P(a),~P(b),P(c),mR(b)} and Q = {Vx. P(z) V R(z)}

Assume the trigger {(P(z))}.

Since E = P(x){z — t} ~ P(t), for t = a, b, ¢, this strategy may return
{z — a}, {x = b}, {z— c}}.

Formally:

e(E, Vz.¢): 1. Select a trigger {t1,...tn} for VZ. p.

2. Foreachi=1,...,n, select a set of substitutions Sj; s.t.
for each o € S;, E |= t;0 ~ g; for some tuple g; € T(E).

3. Return U, S;.

12

Trigger-based instantiation is highly dependent on the chosen triggers

e A proper selection of triggers may guarantee a decision procedure for some fragments [DCKP13].

e But in general, trigger selection can have a high impact on the solver’s success rate

Again for E = {—P(a),~P(b), P(c),~R(b)} and Q = {Vx. P(x) V R(x)}

Assume the trigger {(R(z))}.

Now there is only one possible instantiation: {x + b}

13

A trigger selection strategy [LP16]

Traverse formula and collect trigger heads and trigger killers.
e Trigger heads contain at least one variable and no trigger killers

e Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).

14

A trigger selection strategy [LP16]

Traverse formula and collect trigger heads and trigger killers.
e Trigger heads contain at least one variable and no trigger killers

e Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).
Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and

parsimony.

e A candidate is adequate if it contains all the variables

e |t is parsimonious if removing any term from the candidate makes it inadequate.

14

A trigger selection strategy [LP16]

Traverse formula and collect trigger heads and trigger killers.
e Trigger heads contain at least one variable and no trigger killers
e Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).
Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and
parsimony.
e A candidate is adequate if it contains all the variables
e |t is parsimonious if removing any term from the candidate makes it inadequate.
For the formula V. py(a) V -+ - V p,(z) we have:
e Trigger heads: {p1(z), ..., pn(x)}
e 2™ adequate candidates

e n which are parsimonious: the singletons {p1(z)}, ..., {pn(x)}.

14

A trigger selection strategy [LP16]

Traverse formula and collect trigger heads and trigger killers.
e Trigger heads contain at least one variable and no trigger killers
e Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).
Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and
parsimony.
e A candidate is adequate if it contains all the variables
e |t is parsimonious if removing any term from the candidate makes it inadequate.
For the formula V. py(a) V -+ - V p,(z) we have:
e Trigger heads: {p1(z), ..., pn(x)}
e 2™ adequate candidates
e n which are parsimonious: the singletons {p1(z)}, ..., {pn(x)}.
Remaining candidates ordered by specificity:
e T is less specific than T5 if and only if all matchings of 7% are also matchings for T

e For each t in T there is a trigger head t’" in T such that ¢ matches ¢/, i.e. there is a substitution o such
that to = t'.

14

A trigger selection strategy [LP16]

Traverse formula and collect trigger heads and trigger killers.
e Trigger heads contain at least one variable and no trigger killers
e Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).
Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and
parsimony.
e A candidate is adequate if it contains all the variables
e |t is parsimonious if removing any term from the candidate makes it inadequate.
For the formula V. py(a) V -+ - V p,(z) we have:
e Trigger heads: {p1(z), ..., pn(x)}
e 2™ adequate candidates
e n which are parsimonious: the singletons {p1(z)}, ..., {pn(x)}.
Remaining candidates ordered by specificity:
e T is less specific than T5 if and only if all matchings of 7% are also matchings for T
e For each t in T there is a trigger head t’" in T such that ¢ matches ¢/, i.e. there is a substitution o such
that to = t'.
Finally, the possible triggers for the quantified formula are the minimal candidates. 14

Trigger-based instantiation issues: matching loops

e A well known issue is matching loops: terms from previous instantiation rounds leading to more
instantiations indefinitely

e consider E={a~ f(a),...} and Q = {Va. f(f(x)) = f(x)}. What happens if the trigger is
{f(z)}?

15

Trigger-based instantiation issues: matching loops

e A well known issue is matching loops: terms from previous instantiation rounds leading to more
instantiations indefinitely

e consider E = {a ~ f(a),...} and Q = {Va. f(f(x)) =~ f(x)}. What happens if the trigger is

{f(x)}?
e E={a~ f(a), f(a) > f(f(a)),...}

15

Trigger-based instantiation issues: matching loops

e A well known issue is matching loops: terms from previous instantiation rounds leading to more
instantiations indefinitely

e consider E = {a ~ f(a),...} and Q = {Va. f(f(x)) =~ f(x)}. What happens if the trigger is
{f(x)}?
e E={a~ f(a), f(a) ~
e E={ax f(a), f(a) = f(f(a), f(f(a)) = F(f(f());- -}

15

Trigger-based instantiation issues: matching loops

e A well known issue is matching loops: terms from previous instantiation rounds leading to more
instantiations indefinitely

e consider E={a~ f(a),...} and Q = {Va. f(f(x)) = f(x)}. What happens if the trigger is
{f(z)}?
e« E={a= f(a),
o E={a= f(a),

e Some approaches introduced to address this issue, but they have limited application:

e Select triggers such that they are not subterms of other terms in the formula [LP16]

e Ignore during instantiation terms from instances that did not lead to conflicts [Barl6; MB07]

15

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

o for Vzyz. f(z) % f(2) Vg(y) ~ h(z) a trigger is {f(z), g(y), h(z)}

© Multi-term triggers specially can lead to many instantiations

E with 10? applications each for fs g, h leads to up to 10° instantiations

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

o for Vzyz. f(z) % f(2) Vg(y) ~ h(z) a trigger is {f(z), g(y), h(z)}

© Multi-term triggers specially can lead to many instantiations

E with 10? applications each for fs g, h leads to up to 10° instantiations

@ Instantiation module

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

o for Vzyz. f(z) % f(2) Vg(y) ~ h(z) a trigger is {f(z), g(y), h(z)}

© Multi-term triggers specially can lead to many instantiations

E with 10? applications each for fs g, h leads to up to 10° instantiations

Instantiation module

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

o for Vayz. f(z) # f(2) V g(y) = h(2) a trigger is {f(z), 9(y), h(2)}

© Multi-term triggers specially can lead to many instantiations

E with 10? applications each for fs g, h leads to up to 10° instantiations

Instantiation module

16

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

o for Vayz. f(z) # f(2) V g(y) = h(2) a trigger is {f(z), 9(y), h(2)}

© Multi-term triggers specially can lead to many instantiations

E with 10? applications each for fs g, h leads to up to 10° instantiations

Instantiation module

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E
o for Vayz. f(x) % f(2) V g(y) = h(2) a trigger is {f(z), 9(y), h(2)}

© Multi-term triggers specially can lead to many instantiations

E with 10? applications each for fs g, h leads to up to 10° instantiations

Instantiation module

Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E
o for Vayz. f(x) % f(2) V g(y) = h(2) a trigger is {f(z), 9(y), h(2)}

© Multi-term triggers specially can lead to many instantiations

E with 10? applications each for fs g, h leads to up to 10° instantiations

(]

Easily gets out of hand!

16

Goal-oriented instantiation

Check consistency of £ U Q

@ Only instances refuting the current model are generated

17

Goal-oriented instantiation

Check consistency of £ U Q

@ Only instances refuting the current model are generated
If {f(a) >~ f(c), g(b) £ h(c)} C E, then E is refuted with the instantiation
Vayz. f(x) 2 f(2) V g(y) = h(z) = f(a) 2 f(c) V g(b) ~ h(c)

17

Goal-oriented instantiation

Check consistency of £ U Q

@ Only instances refuting the current model are generated
If {f(a) >~ f(c), g(b) £ h(c)} C E, then E is refuted with the instantiation
Vayz. f(x) 2 f(2) V g(y) = h(z) = f(a) 2 f(c) V g(b) ~ h(c)

@ Goal-oriented instantiation module

17

Goal-oriented instantiation

Check consistency of £ U Q

@ Only instances refuting the current model are generated
If {f(a) >~ f(c), g(b) £ h(c)} C E, then E is refuted with the instantiation
Vayz. f(x) 2 f(2) V g(y) = h(z) = f(a) 2 f(c) V g(b) ~ h(c)

Goal-oriented instantiation module

17

Goal-oriented instantiation

Check consistency of £ U Q

@ Only instances refuting the current model are generated
If {f(a) >~ f(c), g(b) £ h(c)} C E, then E is refuted with the instantiation
Vayz. f(x) 2 f(2) V g(y) = h(z) = f(a) 2 f(c) V g(b) ~ h(c)

VZ. 1 — do

EAnyYo =L

‘Goal—oriented instantiation module

17

Goal-oriented instantiation

Check consistency of £ U Q

@ Only instances refuting the current model are generated
If {f(a) >~ f(c), g(b) £ h(c)} C E, then E is refuted with the instantiation
Vayz. f(x) 2 f(2) V g(y) = h(z) = f(a) 2 f(c) V g(b) ~ h(c)

VZ. 1 — do

EAnyYo =L

‘Goal—oriented instantiation module

17

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that make E
unsatisfiable

18

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that make E
unsatisfiable

e E={-P(a),~P(b), P(c),—~R(b)} and Q = {Vx. P(z) V R(z)}
e Since E, P(b) V R(b) |= L, this strategy will return {{z — b}}.

e Formally:

c(E, Vz.p): 1. Either return {o} where E, oo = L, or return 0.

18

Impact of conflict-based instantiation [Reynolds et al. FMCAD'14]

cvcéd+ci

10
cvcd

1e+6

1e+s

1o+t

1000

cvcd+ci

T5T00 000 lerd Tews let le+7
cvcd

(b) Reported number of instances.

* experiments across 12468 benchmarks from TPTP, SMT-LIB, and Sledghammer. 19

Impact of conflict-based instantiation

[BFR17]

Efficiency scatter plot

verit_tc

veriT: + 800 out of 1785 unsolved problems
CVC4:+ 200 out of 745 unsolved problems

e Improvements on CVC4 came from discarding from trigger-based strategy instances already entailed by the formula: if
E = o[t], for Vz. ¢[z].

* experiments in the “UF”, “UFLIA", “UFLRA" and “UFIDL" categories of SMT-LIB, which have 10 495 benchmarks annotated as unsatisfiable, with 30s timeout.

20

Caveats of conflct-based instantiation

e The search for the instantiations in practice is more expensive

e The technique is inherently incomplete: it only considers a single formula at a time

e E={p(a)} and Q = {Vz. q(z), Vyz. 2q(y) V ~p(2)}.
There are no substitutions o, p such that E = —q(z)o or E = q(y)p A p(2)p, even though EUQ is
clearly inconsistent.

e |t should be seen as a complement to other techniques that are more general

21

Instantiation strategies: model-based [Ge and de Moura CAV'09]

Model-based instantiation (MBQI): build a candidate model for E U Q and instantiate with
counter-examples from model checking

22

Instantiation strategies: model-based [Ge and de Moura CAV'09]

Model-based instantiation (MBQI): build a candidate model for E U Q and instantiate with
counter-examples from model checking

e E={-P(a),~P(b), P(c),—~R(b)} and Q = {Vx. P(z) V R(z)}
e Assume that PM = \z.ite(z ~¢, T, 1) and RM = \z. L.
e Since M [~ P(a) V R(a), this strategy may return {{z — a}}.

e Formally:

m(E, Vz.¢): 1. Construct a model M for E.

2. Return {{Z — t}} where t € T(E) and M [~ o{z >t },
or () if none exists.

22

Instantiation strategies: model-based [Ge and de Moura CAV'09]

e MBQI is complete for a number of fragments
e Bernays-Schonfinkel

e FEssentially Uninterpreted Formulas: “theory variables” only appear as arguments of uninterpreted
functions

e It is a good strategy to complement incomplete techniques

e One should note that by its nature it is generally more successful on satisfiable problems

23

A unifying framework for classic
instantiation techniques

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

E={f(a) = f(c), 9(b) £ h(0)}, Q = {Vayz. f(x) # f(2) V g(y) = h(2)}

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

E={f(a) = f(c), 9(b) £ h(c)}, Q = {Vayz. f(x) £ f(2) V 9(y) = h(2)}
fla) = f(e) Ng(b) # hlc) E (f(2) = f(2) Ag(y) # h(2)) o

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q
E={f(a) ~ f(c), g(b) # h(0)}, Q = {Vayz. f(z) # f(2) Vg(y) = h(z)}
fa) ~ f(c) Ag(b) # h(c) = (F(z) ~ f(2) Ag(y) # h(z)) o

e Each literal in the right hand side delimits possible o

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

E={f(a) = f(c), 9(b) £ h(c)}, Q = {Vayz. f(x) £ f(2) V 9(y) = h(2)}
fla) = f(e) Ng(b) # hlc) E (f(2) = f(2) Ag(y) # h(2)) o

e Each literal in the right hand side delimits possible o

o f(z)~ f(z): eitherz ~zorz~aANz~corz~cAz~a

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

E={f(a) = f(c), 9(b) £ h(c)}, Q = {Vayz. f(x) £ f(2) V 9(y) = h(2)}
fla) = f(e) Ng(b) # hlc) E (f(2) = f(2) Ag(y) # h(2)) o

e Each literal in the right hand side delimits possible o

o f(z)~ f(z): eitherz ~zorz~aANz~corz~cAz~a

o g(y) Zh(z): y~bAz~c

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

E={f(a) = f(c), 9(b) £ h(c)}, Q = {Vayz. f(x) £ f(2) V 9(y) = h(2)}
fla) = f(e) Ng(b) # hlc) E (f(2) = f(2) Ag(y) # h(2)) o

e Each literal in the right hand side delimits possible o

o f(x)~ f(z): eitherz ~¥zorz~aANz~corz~cAz~a
e gy) Zh(z): y~bAz~c

c={z—c,y—b z—c}

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

E={f(a) = f(c), 9(b) £ h(c)}, Q = {Vayz. f(x) £ f(2) V 9(y) = h(2)}
fla) = f(e) Ng(b) # hlc) E (f(2) = f(2) Ag(y) # h(2)) o

e Each literal in the right hand side delimits possible o

o f(z)~ f(z): eitherz ~zorz~aNz~corz~cAz~a
e gy) Zh(z): y~bAz~c
c={z—c,y—b z—c}

or
o={x—a,y—b 2z c}

24

Let’s look deeper into the problem (with 7" = EUF)

E = —po, for some VZ. ¢ € Q

E={f(a) = f(c), 9(b) £ h(c)}, Q = {Vayz. f(x) £ f(2) V 9(y) = h(2)}
fla) = f(e) Ng(b) # hlc) E (f(2) = f(2) Ag(y) # h(2)) o

e Each literal in the right hand side delimits possible o

o f(z)~ f(z): eitherz ~zorz~aNz~corz~cAz>~a
e gly) Zh(z): y~bAz~c
c={z—c,y—b z—c}

or
o={x—a,y—b 2z c}

24

E-ground (dis)unification [BFR17]

Given conjunctive sets of equality literals £ and L, with E ground, finding a substitution o s.t.
EE Lo

e Solution space can be restricted into ground terms from E U L

e NP-complete

e NP: solutions can checked in polynomial time
e NP-hard: reduction of 3-SAT into the entailment

e Variant of classic (non-simultaneous) rigid E-unification

$10 ~ 110, ..., $,0 ~ 1,0 E uo ~vo

25

Casting instantiation techniques: Trigger-based

ElE(up ~y1 A A 2 ym) 0

where {uy,...,um} is a trigger for VZ. 1 € Q and each y;,0 € T(E)
o o E={f(a) =g(b), h(a) =b, f(a) ~ f(c)}
o Q= {Va. f(z) # g(h(x))}, Trigger={f(x)}

e Solving E |= (f(z) ~ y)o yields
e g1 ={y~ f(a), z+— a}

o oy ={y— f(c), x—c}

e The instantiation lemmas are:

o Va. f(x) # g(h(z)) — f(a) # g(h(a))
o Vo. f(z) £ g(h(z)) — f(c) # g(h(c))

26

Casting instantiation techniques: Conflict-based

E = —o, for some VZ. ¢ € Q

e Consider

o E={f(a) ~g(b), h(a) >0, f(a) = f(c)}
o Q={vz. f(z)# g(h(x))}

e Solving E |= (f(x) ~ g(h(z)))o yields

e 0 ={z+—a}

e The instantiation lemma is:

o Vr. f(z) #£ g(h(z)) — f(a) # g(h(a))

27

Casting instantiation techniques: Model-based

Eor E —o, for some VZ. ¢ € Q
where Eyop is a total extension of E s.t.:

» ground terms not in E necessary for evaluating () are added

» all terms in T(E) not asserted equal are made disequal

o Consider
« E={f(a) = g(b), h(a) ~ b}
e Q={Vz. f(z) % g(x), Vay. ¥}, e = a as a default value, and
Eror =EU {a#ba f(a),b f(a)}
U {f(b) = f(a), f(f(a)) =~ f(a), g(a) = a,g(f(a)) ~a} U{... }

e Solving {..., f(a) = g(b), f(b) = f(a),...} E f(z) = g(x)o yields
e 0 ={z+— b}
e The lemma Vz. f(x) # g(x) = f(a) # g(a) prevents the same Eyor
28

How to solve the E-ground (dis)unification problem?

Entailment conditions:

o B (z~y)o
e o =yo or
e some t1, 2 s.t. xo € [t1], yo € [t2], and [t1] = [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

o B (z~y)o
e ro =yo or
e some t1, t2 s.t. xo € [t1], yo € [t2], and [t1] = [t2]

o F = (xr~ f(s1,...,8n))0, z occurs in f(s1,...,5n),

e some 1, tz € T(E) s.t. zo € [t1], f(s1,...,Sn)0 € [t2], and [t1] = [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

o Fl=(zx~y)o

e 1o = yo or

e some t1, 2 s.t. xo € [t1], yo € [t2], and [t1] = [t2]
o F = (xr~ f(s1,...,8n))0, z occurs in f(s1,...,5n),

e some 1, tz € T(E) s.t. zo € [t1], f(s1,...,Sn)0 € [t2], and [t1] = [t2]
e F = (x =~ f(s1,...,5n))0, x does not occur in f(s1,...,sn) and

e zo = f(s1,...,8n)0 or

e some 1, t2 s.t. xo € [t1], f(s1,...,8n)0 € [t2], and [t1] = [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

o Fl=(z~vy)o
e 1o =yo or
e some t1, 2 s.t. xo € [t1], yo € [t2], and [t1] = [t2]
o F = (xr~ f(s1,...,8n))0, z occurs in f(s1,...,5n),
e some 1, tz € T(E) s.t. zo € [t1], f(s1,...,Sn)0 € [t2], and [t1] = [t2]
e F = (x =~ f(s1,...,5n))0, x does not occur in f(s1,...,sn) and
e zo = f(s1,...,8n)0 or
e some 1, t2 s.t. xo € [t1], f(s1,...,8n)0 € [t2], and [t1] = [t2]
o F = (f(ut,...,un)~g(vi,...,vn))o and
e f=gand EFuwio~vio, ..., EEuyo ~v,0 or
e some i1, t2 € T(E) s.t. [t1] = [t2], f(u1,...,un)o € [t1], and g(v1, ...

,Un)o € [t2]

29

How to solve the E-ground (dis)unification problem?

Entailment conditions:

o Fl=(z~vy)o
e xo =yo or
e some t1, 2 s.t. xo € [t1], yo € [t2], and [t1] = [t2]

EE (x>~ f(s1,...,8n))0, x occurs in f(s1,...,8n),

® some t, ta € T(E) s.t. xo € [tl], f(Sl, 00 .,sn)o & [tg], and [tl} = [tg]

E = (z ~ f(s1,...,8n))0, x does not occur in f(s1,...,s,) and

e zo = f(s1,...,8n)0 or

e some 1, t2 s.t. xo € [t1], f(s1,...,8n)0 € [t2], and [t1] = [t2]

EE (f(ut,...,un) ~ g(vi,...,vn))o and

e f=gand EFuwio~vio, ..., EEuyo ~v,0 or

e some i1, t2 € T(E) s.t. [t1] = [t2], f(u,...,un)o € [t1], and g(v1,...,vn)0 € [t2]
EE (u#v)o

e some t1, lo € T(E) s.t. E =11 % t2, uo € [t1], and vo € [t2]

29

Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and terminating calculus for
solving E-ground (dis)unification

& (allows for) Goal-oriented instantiation technique
& Efficient

© Ad=hoe Versatile framework, recasting many instantiation techniques as a CCFV problem

30

Finding solutions o for F |= Lo

E E Lo
fla) = f(c)ng(d) £ h(c) | (fl2) = f(z) Agy) % h(2)) o

31

Finding solutions o for F |= Lo

E E Lo
fla) = f(c)ng(d) £ h(c) | (fl2) = f(z) Agy) % h(2)) o

flx) = f(2) Ag(y) £ h(z)

31

Finding solutions o for F |= Lo

E E Lo
fla) = f(c)ng(d) £ h(c) | (fl2) = f(z) Agy) % h(2)) o

f(@) ~ f(2) Agly) # h(2)

%)

fl@)~f(z)ANz~cAhy~b

31

Finding solutions o for F |= Lo

E E Lo
fla) = f(c)ng(d) £ h(c) | (fl2) = f(z) Agy) % h(2)) o

J(@) = J(2) A g(y) # h(z)
d

f@)=f(z)Az~cAy~b

31

Finding solutions o for F |= Lo

E E Lo
fla) = f(c)ng(d) £ h(c) | (fl2) = f(z) Agy) % h(2)) o

f(@) ~ f(2) Agly) # h(2)

f@)=f(z)Az~cAy~b

31

Finding solutions o for F |= Lo

E E Lo
fla) = f(c)ng(d) £ h(c) | (fl2) = f(z) Agy) % h(2)) o

f(@) ~ f(2) Agly) # h(2)

f@)=f(z)Az~cAy~b

31

Finding solutions o for F |= Lo

E E Lo
fla) = f(c)ng(d) £ h(c) | (fl2) = f(z) Agy) % h(2)) o

31

Implementation

SMT solver

Instance

Instantiation
module

Quantifier-free SMT solver

casone [sar soiver |
reasoner SAT solver
(Boolean Model)

e Model minimization

e Relevancy

e Prime implicant

e Top symbol indexing of E-graph from ground congruence closure

f(tal, - [tad)

f—
ftals- - tn])
e E = f(z)o ~t only if [t] contains some f(t)

E | f(z)o ~ g(y)o only if some [t] contains some f(t') and some g(t")

e Bitmasks for fast checking if symbol has applications in congruence class

e Mapping from congruence class to classes it's disequal to

32

Implementation

e Selection strategies
EE f(z,y) 2h(z) Az ~tA...

e Eagerly checking whether constraints can be discarded

o After assigning x to ¢, the remaining problem is normalized
EE ft,y) 2h(z)A...
o E = f(t,y)o ~ h(z)o only if there is some f(t',t") s.t.

Ept~t

33

Effective enumerative
instantiation

Instantiation and the Herbrand Theorem

e The earliest theorem provers relied on Herbrand instantiation

e Instantiate with all possible terms in the Herbrand universe (all possible well-sorted ground terms in the

formula’s signature)

e Enumerating all instances is unfeasible in practice!

e Enumerative instantiation was then discarded

34

Instantiation and the Herbrand Theorem

e The earliest theorem provers relied on Herbrand instantiation

e Instantiate with all possible terms in the Herbrand universe (all possible well-sorted ground terms in the
formula’s signature)

e Enumerating all instances is unfeasible in practice!

e Enumerative instantiation was then discarded

But enumerative instantiation can be effective for state-of-the-art SMT

o strengthened version of the Herbrand theorem

o efficient implementation techniques

Theorem (Strengthened Herbrand [Kan63; RBF18])

If there exists an infinite series of finite satisfiable sets of ground literals E; and of finite sets of
ground instances Q; of Q such that

e Qi={ypo | Vz.¢ € Q, dom(c) = {Z} Aran(c) C T(E;)},
e Eg=E Ei11 FEUQ;

then E U Q is satisfiable in the empty theory with equality.

Direct application at

SMT solver Instantiation
module
SMT formula (CAssignment) (instance)

Ground
SMT solver

e Quantifier-free solver enumerates assignments EU Q

e Instantiation module generates instances of Q

35

Enumerative instantiation

1. Choose an ordering =< on tuples of quantifier-free terms.
u(E, Vz.¢): 2. Return {{Z — t}} where ¢ is a minimal tuple of terms w.r.t <,
such that ¢ € T(E) and E £ o{Z — ¢}, or 0 if none exist.

e E={-P(a),~P(b),P(c),~R(b)} and Q = {Vz. P(x) V R(x)}
e u chooses an ordering on tuples of terms, say the lexicographic extension of < where a < b < c.

e Since E does not entail P(a)V R(a), this strategy returns {{z — a}}.

36

u as an alternative for m

Enumerative instantiation plays a similar role to MBQI

It can also serve as a “completeness fallback” to ¢ and e

e However, u has advantages over m for UNSAT problems

e Moreover it is significantly simpler to implement

e No model building
e No model checking

37

E = {=P(a), R(b), S(c)}
Q = {Vz.R(z)V S(z), Vz. ~R(x) V P(x), Vx. ~S(z) V P(z)}
PM = . L,
M=<{ RM = Jzite(z~b, T,1), ¢, a<b<c
SM = xite(z~e, T, 1)
@ zst. MFEe zst. EFEe m(E Ve g) u(E Ve ¢)
R(z)V S(z) a a {{z—a}} {{z—a}}
—R(z)V P(z) b a,b,c {H{z—0b}} {{zr—a}}
-S(z) V P(x) 8 a,b,c H{z—c}} {{z+—a}}

e u instantiates uniformly so that new terms are introduced less often
m instantiates depending on how model was built
e Moreover, u leads to EA Q{z — a} = L

e m requires considering E’ which satisfies E along the new instances

38

Implementation

Implementing enumerative instantiation efficiently depends on:

e Restricting enumeration space
e Avoiding entailed instantiations

e Term ordering to introduce new terms less often

39

VC4 configurations on unsatisfiable benchmarks

2 —o— etu / ﬁ
10241 eu g
—— e+m /&‘}
g
> —— e;m g
T 104 '
£ € o
R= fs)‘
= e u
jos]
5 m pd
100 . o
el 0T
%%XKWM -
r«:’“t;;;ﬁf i

10— 1 2585

6000 8000 10000 12600 14000 16000 18000 20000

e 42065 benchmarks, being 14731 from TPTP and 27334 from SMT-LIB

e e+u stands for “interleave e and u”, while e;u for “apply e first, then u if it fails

e All CVC4 configurations have

as prefix
40

Impact of u on satisfiable benchmarks

Library # ueuetu e m emetm

TPTP 14731 471 492 464 17 930 808 829

UF 7293 39 42 42 0 70 69 65
Theories 20041 g & 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161

e As expected, m greatly outperforms u
e Nevertheless u answers SAT half as often as m in empty theory

e Moreover, u solves 13 problems m does not

41

Impact of u on unsatisfiable benchmarks

u solves 3043 more benchmarks than m

u solves 1737 problems not solvable by e

Combinations of e with u or m lead to significant gains

e+u is best configuration, solving 253 more problems than e+m and 1295 more than e

Some benchmark families only solvable due to enumeration

e Overall the enumerative strategies lead to a virtual portfolio of CVC4 solving 712 more problems

42

Comparison against other instantiation-based

T solvers

uport-i

2.
L | - mport-i
—<— z3 mport-i

—_— e

101 Be

CPU time (s)

18000

20000

22000

107} ; : =
8000 10000 12000 14000

6000

e Portfolios run without interleaving strategies (not supported by Z3)

e 73 uses several optimizations for e not implemented in CVC4

e Z3 does not implement c

16000

43

Restricting Enumeration Space

e Strengthened Herbrand Theorem allows restriction to T(E)

e Sort inference [CS03] reduces instantiation space by computing more precise sort information
e EUQ={a#b, f(a) ~c}U{P(f(z))}
e a,bc,x:T
e f:7— 7and P:7 — Bool.
e This is equivalent to E° U Q® = {a1 % b1, fi2(a1) = c2} U{P2(f12(z1))}
® aj,bi,x1:7
e C2:To
e fi2:71 — 12 and P : 75 — Bool

e u would derive e.g. {z — ¢} for EUQ, while for E* U Q® the instantiation {z1 > c2} is not well-sorted.

44

Term Ordering

Instantiations are enumerated according to the order
max;—; t; < maxj—; S;, or
(t1,. .. tn) < (81,...,8,) if max™_, t; — max™_, s; and
(t1, - 5 tn) <iex (81,...,5n)

for a given order < on ground terms.

If a <b<c, then

(a,a) < (a,b) < (b,a) < (b,b) < (a,c) < (¢,b) < (c,¢)

e We consider instantiations with ¢ only after considering all cases with a and b
e Goal is to introduce new terms less often
e Order on T(E) fixed for finite set of terms t; < ... <1,

e Instantiate in order with ¢1,...,¢,

e Then choose new non-congruent term ¢ € T(E) and have ¢, <t
45

Fair and Adventurous Enumeration of Quantifier Instantiations [JBFR21]

e Recently we tried a number of different orderings for tuples
e Significant orthogonality, no clear winner

e In the process we improved the generation of instances in u to remove redundant tuples
e A subset of the tuple is enough to lead to an entailed instance

e A subset of the tuple is enough to lead an equivalent, modulo rewriting, instance

L e L e e T Te
(s)
+ +
+ -
v o Ny H
o, G 0 ¥
+ - + b -
100% PEAAPRSE™S. > . b
_g * o L+
] +. + L+
g L T AR T e+ +
= g s
= ot # +
< L+ 1 +
+ +
2 Y e
5 10 + 13 -
L 3’3 +
+ *
[t
. ol
Bt 4 M
%
1 y
1 10 100 |
u time (s)

46
o UF, UFLIA, and UFNIA, totaling 31314 problems

So what quantifier handling
techniques do | use if | have a
quantified SMT problem?

A flowchat to pick quantifier handling strategies, at least in cvch

(courtesy of Andy Reynolds)

Do the
Yes .

involve UF or
arrays?

Is “sat”
important?

Yes Doe§ the thgqry
admit quantifier
elimination (e.g.

LIA, BV)?

Counterexample-Guided
Instantiation
(--cegai)*

Syntax-Guided
Instantiation
(--sygus-inst)*

Are all

quantifiers
over finite or
uninterpreted
sorts?

Yes

Is itimportant
to get fast “unknown”
instead of timeout?

No

E-Matching +

E-Matching Enumerative Instantiation

(--e-matching)*

Finite mode finding
(~finite-model-find)

Are models
expected to be
almost
constant
functions?

Model-Based Instantiation

Recast as SyGuS
(--sygus-inference=on)

* Indicates option is enabled by
default when set-logic is used

47

Conclusion

SMT solvers mainly use instantiation techniques to handle quantified formulas

They are often incomplete, slow, or fragile

But they also enable many successful use cases in e.g. software verification and automation for proof
assistants

e There are many options, ask developers.

48

An introduction to SMT solving with quantifiers

Haniel Barbosa, Universidade Federal de Minas Gerais

UFMmMG

SAT/SMT /AR Summer School
2024-06-27, LORIA-Inria, Université de Lorraine, Nancy, FR

CCFV calculus

EslFpz2ynC
Dvar
(z~tAy~t AC)

172 vm, (+/]€ B0, Bl=tgt!

Ey kg z 2 f(5)AC
Drapp
(z~tAsy =ty A Asp =t AC)

E; e Vi e,
Bl=tet!, f(¢)€Elt’]

Eq kg f(a) 2 9(3m) A C
> DGEN

< Uy 2t A AUy 2ty A

Br e Vi wiers, mrwe, (o mpt n-non o it AC
FE)Elt], g(t/ m)Elt’] m

E, kg C1V Co E, FgtANC
SPLIT YiELD if E =4
E; kg Cy E; kg C2 E, IFg C
E; kg LANC
if £ is ground and E [~ ¢

FAIL
E, IFg L

49

References i

[ABJ+13]

[Bar16]

[BFR17]

[BJ15]

[Bjg10]

References

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, et al. “Syntax-guided synthesis”. In:
Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2013, pp. 1-8.

Haniel Barbosa. “Efficient Instantiation Techniques in SMT (Work In Progress)”. In:
Practical Aspects of Automated Reasoning (PAAR). Ed. by Pascal Fontaine, Stephan Schulz, and Josef Urban. Vol. 1635.
CEUR Workshop Proceedings. CEUR-WS.org, 2016, pp. 1-10.

Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. “Congruence Closure with Free Variables”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II. Ed. by Axel Legay and Tiziana Margaria.
Vol. 10206. Lecture Notes in Computer Science. 2017, pp. 214-230.

Nikolaj Bjgrner and Mikolas Janota. “Playing with Quantified Satisfaction”. In:
Logic for Programming, Atrtificial Intelligence, and Reasoning (LPAR). Ed. by Ansgar Fehnker, Annabelle Mclver,
Geoff Sutcliffe, et al. Vol. 35. EPiC Series in Computing. EasyChair, 2015, pp. 15-27.

Nikolaj Bjgrner. “Linear Quantifier Elimination as an Abstract Decision Procedure”. In:
International Joint Conference on Automated Reasoning (IJCAR). Ed. by Jiirgen Giesl and Reiner Hahnle. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 316-330.

References

[BKPU16]

[BR15]

[CS03]

[DCKP13]

[DNS05]

[GMo9]

[JBFR21]

Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, et al. “Hammering towards QED". In:
J. Formalized Reasoning 9.1 (2016), pp. 101-148.

Peter Backeman and Philipp Riimmer. “Theorem Proving with Bounded Rigid E-Unification”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in
Computer Science. Springer, 2015.

Koen Claessen and Niklas Sérensson. “New Techniques that Improve MACE-style Finite Model Finding”. In:
Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications. 2003.

Claire Dross, Sylvain Conchon, Johannes Kanig, et al. “Adding Decision Procedures to SMT Solvers using Axioms with
Triggers”. 2013.

David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for Program Checking”. In: J. ACM 52.3
(2005), pp. 365—-473.

Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories”. In:
Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes in Computer
Science. Springer, 2009, pp. 306—-320.

Mikolds Janota, Haniel Barbosa, Pascal Fontaine, et al. “Fair and Adventurous Enumeration of Quantifier Instantiations”.
In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2021, pp. 256-260.

References

[Kan63]

[Kv13]

[Lei10]

[LHC+23]

[LP16]

[MBO07]

Stig Kanger. “A Simplified Proof Method for Elementary Logic”. In: Computer Programming and Formal Systems. Ed. by
P. Braffort and D. Hirschberg. Vol. 35. Studies in Logic and the Foundations of Mathematics. Elsevier, 1963, pp. 87 —94.

Laura Kovéacs and Andrei Voronkov. “First-Order Theorem Proving and Vampire”. English. In:
Computer Aided Verification (CAV). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 1-35.

K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Correctness”. In:
Logic for Programming, Atrtificial Intelligence, and Reasoning (LPAR). Ed. by Edmund M. Clarke and Andrei Voronkov.
Vol. 6355. Lecture Notes in Computer Science. Springer, 2010, pp. 348-370.

Andrea Lattuada, Travis Hance, Chanhee Cho, et al. “Verus: Verifying Rust Programs using Linear Ghost Types". In:
Proc. ACM Program. Lang. 7.00PSLA1 (2023), pp. 286-315.

K. Rustan M. Leino and Clément Pit-Claudel. “Trigger Selection Strategies to Stabilize Program Verifiers”. In:
Computer Aided Verification (CAV). Ed. by Swarat Chaudhuri and Azadeh Farzan. Vol. 9779. Lecture Notes in Computer
Science. Springer, 2016, pp. 361-381.

Leonardo de Moura and Nikolaj Bjgrner. “Efficient E-Matching for SMT Solvers”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning. Vol. 4603. Lecture Notes in Computer Science.
Springer, 2007, pp. 183-198.

References iv

[Mon10]

[NPR+21]

[Ott08]

[RBF18]

[RBN-19]

[RDK+15]

David Monniaux. “Quantifier Elimination by Lazy Model Enumeration”. In: Computer Aided Verification (CAV). Ed. by
Tayssir Touili, Byron Cook, and Paul B. Jackson. Vol. 6174. Lecture Notes in Computer Science. Springer, 2010,
pp. 585-599.

Aina Niemetz, Mathias Preiner, Andrew Reynolds, et al. “Syntax-Guided Quantifier Instantiation”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part Il. Ed. by Jan Friso Groote and
Kim Guldstrand Larsen. Vol. 12652. Lecture Notes in Computer Science. Springer, 2021, pp. 145-163.

Jens Otten. “leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic

(System Descriptions)”. English. In: Automated Reasoning. Ed. by Alessandro Armando, Peter Baumgartner, and
Gilles Dowek. Vol. 5195. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 283-291.

Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. "Revisiting Enumerative Instantiation”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II. Ed. by Dirk Beyer and Marieke Huisman.
Vol. 10806. Lecture Notes in Computer Science. Springer, 2018, pp. 112-131.

Andrew Reynolds, Haniel Barbosa, Andres Notzli, et al. “cvc4sy: Smart and Fast Term Enumeration for Syntax-Guided
Synthesis”. In: Computer Aided Verification (CAV), Part Il. Ed. by Isil Dillig and Serdar Tasiran. Vol. 11562. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2019, pp. 74-83.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, et al. “Counterexample-Guided Quantifier Instantiation for Synthesis in
SMT". In: Computer Aided Verification (CAV). Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9207. Lecture Notes
in Computer Science. Springer, 2015, pp. 198-216.

References v

[RTG+13] Andrew Reynolds, Cesare Tinelli, Amit Goel, et al. “Quantifier Instantiation Techniques for Finite Model Finding in SMT".
In: Proc. Conference on Automated Deduction (CADE). Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in
Computer Science. Springer, 2013, pp. 377-391.

[RTM14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendon¢a de Moura. “Finding conflicting instances of quantified formulas in
SMT". In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195-202.

[SCV19] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. “Faster, Higher, Stronger: E 2.3". In:
Proc. Conference on Automated Deduction (CADE). Ed. by Pascal Fontaine. Vol. 11716. Lecture Notes in Computer
Science. Springer, 2019, pp. 495-507.

	A unifying framework for classic instantiation techniques
	Effective enumerative instantiation
	So what quantifier handling techniques do I use if I have a quantified SMT problem?
	References

