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Agenda

• What are quantifiers for in SMT?

• An overview of classic instantiation techniques

• Trigger-based instantiation

• Conflict-based instantiation

• Model-based instantiation

• A unifying framework for classic instantiation techniques

• Effective enumerative instantiation

• Playing with different instantiation techniques
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Why do we need quantifiers?

• We’ve just seen how powerful and flexible SMT solvers are.

• The efficiency of SMT solvers comes from dedicated decision procedures for their theories.

• But what if the problem you want to solve does not fit existing theories?
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Example

(set-logic UF)

(declare-sort U 0)

(declare-fun f (U U) U)

(declare-const a U)

(declare-const b U)

(assert (not (= (f a b) (f b a))))

(check-sat)

(set-logic UF)

(declare-sort U 0)

(declare-fun f (U U) U)

(declare-const a U)

(declare-const b U)

(assert (not (= (f a b) (f b a))))

(assert (forall ((x U) (y U)) (= (f x y) (f y x))))

(check-sat)
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Quantifiers are important for many applications

• Automatic theorem proving

• Adding axioms for new symbols (tools such Sledghammer [BKPU16])

• Software verification

• Encoding contracts (tools such as Dafny [Lei10] and Verus [LHC+23] rely heavily on quantifiers)

• Function synthesis

• Specifying the behavior of a function to synthesize [ABJ+13; RBN+19]

• Unfortunately, adding quantifiers leads to several complications.

• Undecidable in general

• Explosive heuristics

• Users want it to work as well as on quantifier-free problems

• But as we will see today, state-of-the-art solvers do well with quantifiers in practice
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Satisfiability Modulo Theories (SMT)

First-order formulas in CNF:
t ::= x | f(t, . . . , t)
φ ::= p(t, . . . , t) | ¬φ | φ ∨ φ | ∀x1 . . . xn. φ

Given a formula φ in FOL and background theories T1, . . . , Tn, finding a modelM giving an

interpretation to all terms and predicates such thatM |=T1,...,Tn
φ.

• Quantified formulas can be classified as strong and weak quantifiers, which means to occur in a

negative (e.g., under a single negation) or positive context.

• It is sound to Skolemize strong quantifiers:

∃x. φ[x]
where k is a fresh function symbol

φ[k]

• If Skolemization is done under other quantifiers, the introduced function must take the respective

quantified variables as arguments.

∀y. ∃x. p(x, y)
∀y. p(f(y), y)
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CDCL(T) architecture

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E

• E is a set of ground literals {a ≤ b, b ≤ a + x, x ≃ 0, f(a) ̸≃ f(b)}

• Q is a set of quantified clauses {∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)}

Instantiation module generates instances of Q f(a) ̸≃ f(b) ∨ g(a) ≃ h(b)
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The abstract procedure: ground case

function CheckSat(φ, T ) is
φ← Process(φ) // Simplifications, CNF transformation

do

E ← CheckBoolean(abs(φ)) // SAT solver

if E = ∅ then

return Unsat

C ← CheckGround(E, T ) // Theory solvers

φ← φ ∪ C
while C ̸= ∅
return Sat
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The abstract procedure: quantified case

function CheckSatQ(φ, T ) is

φ← Process(φ) // Simplifications, CNF transformation

do

⟨E, Q⟩ ← CheckBoolean(absQ(φ)) // SAT solver

if E ∪Q = ∅ then

return Unsat

C ← CheckGround(E, T ) // Theory solvers

if C ̸= ∅ then

φ← φ ∪ C

continue

I ← Inst(E, Q, T ) // Instantiation module

φ← φ ∪ I
while I ̸= ∅
if models can be built for T then

return Sat

else

return Unknown
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Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable

set of its instances.

Is the following syllogism correct?

All humans are mortal

All Greeks are humans

Then all Greeks are mortal

Translate to FOL

∀x.H(x) →M(x)

∀x.G(x) → H(x)

∀x.G(x) →M(x)

• Checking the validity of this formula:((
∀x.H(x) →M(x)

)
∧
(
∀x.G(x) → H(x)

))
→ ∀x.G(x) →M(x)

• Checking the unsatisfiability of:

∀x.H(x) →M(x),∀x.G(x) → H(x),¬(∀x.G(x) →M(x))

• Skolemize: ∀x.H(x) →M(x),∀x.G(x) → H(x), G(s),¬M(s)

• Instantiate: add the two formulas H(s) →M(s), G(s) → H(s)

• A ground SMT solver will deduce unsatisfiability.
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Instantiation is not the only way to reason about first-order logic

• Superposition-based, tableaux-based systems are well-established theorem provers

• Vampire [KV13], E [SCV19], ...

• Princess [BR15], LeanCop [Ott08], ...

• The focus on instantiation in SMT can be explained by how it makes “quantifier reasoning” simulate

how the other theory solvers work, which is well-suited for the CDCL(T) architecture.
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Instantiation techniques

• Trigger-based

[DNS05; MB07]

• Conflict-based

[RTM14; BFR17]

• Model-based

[GM09; RTG+13]

⊕ General: ∀+EUF+...

⊖ Finding instantiations is hard

• Enumerative

[RBF18]

⊕ Easy to implement

⊕ Reliable last resort

• QE-based [Mon10; Bjø10; RDK+15; BJ15]

⊕ Decision procedures available

⊖ Pure fragments

• Syntax-Guided Synthesis

(SyGuS)-based [NPR+21]

⊕ Covers pure theories where QE is not

easily available

⊖ Very expensive
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Instantiation strategies: trigger-based [Detlefs et al. J. ACM’05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of
triggers and E-matching

• A trigger is a set of terms whose free variables should cover the respective quantified variables.

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
• Assume the trigger {(P (x))}.
• Since E |= P (x){x 7→ t} ≃ P (t), for t = a, b, c, this strategy may return

{{x 7→ a}, {x 7→ b}, {x 7→ c}}.
• Formally:

e(E, ∀x̄. φ): 1. Select a trigger {t̄1, . . . t̄n} for ∀x̄. φ.

2. For each i = 1, . . . , n, select a set of substitutions Si s.t.

for each σ ∈ Si, E |= t̄iσ ≃ ḡi for some tuple ḡi ∈ T(E).

3. Return
⋃n

i=1 Si.
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Trigger-based instantiation is highly dependent on the chosen triggers

• A proper selection of triggers may guarantee a decision procedure for some fragments [DCKP13].

• But in general, trigger selection can have a high impact on the solver’s success rate

• Again for E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Assume the trigger {(R(x))}.

• Now there is only one possible instantiation: {x 7→ b}
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A trigger selection strategy [LP16]

1 Traverse formula and collect trigger heads and trigger killers.

• Trigger heads contain at least one variable and no trigger killers

• Trigger killers are typically applications of interpreted symbols (arithmetic, logical connectives, ...).

2 Candidate triggers are built by combining trigger heads while ensuring two properties: adequacy and

parsimony.

• A candidate is adequate if it contains all the variables

• It is parsimonious if removing any term from the candidate makes it inadequate.

3 For the formula ∀x. p1(x) ∨ · · · ∨ pn(x) we have:

• Trigger heads: {p1(x), . . . , pn(x)}
• 2n adequate candidates

• n which are parsimonious: the singletons {p1(x)}, . . . , {pn(x)}.
4 Remaining candidates ordered by specificity:

• T1 is less specific than T2 if and only if all matchings of T2 are also matchings for T1

• For each t in T1 there is a trigger head t′ in T2 such that t matches t′, i.e. there is a substitution σ such

that tσ = t′.

5 Finally, the possible triggers for the quantified formula are the minimal candidates.
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Trigger-based instantiation issues: matching loops

• A well known issue is matching loops: terms from previous instantiation rounds leading to more

instantiations indefinitely

• consider E = {a ≃ f(a), . . . } and Q = {∀x. f(f(x)) ≃ f(x)}. What happens if the trigger is

{f(x)}?

• E = {a ≃ f(a), f(a) ≃ f(f(a)), . . . }
• E = {a ≃ f(a), f(a) ≃ f(f(a)), f(f(a)) ≃ f(f(f(a))), . . . }

• Some approaches introduced to address this issue, but they have limited application:

• Select triggers such that they are not subterms of other terms in the formula [LP16]

• Ignore during instantiation terms from instances that did not lead to conflicts [Bar16; MB07]
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Trigger-based instantiation can be explosive

Pattern-matching of terms from Q into terms of E

• for ∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z) a trigger is {f(x), g(y), h(z)}

⊖ Multi-term triggers specially can lead to many instantiations

E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!
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Goal-oriented instantiation

Check consistency of E ∪ Q

⊕ Only instances refuting the current model are generated

If {f(a) ≃ f(c), g(b) ̸≃ h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) ̸≃ f(z) ∨ g(y) ≃ h(z)→ f(a) ̸≃ f(c) ∨ g(b) ≃ h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!
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Instantiation strategies: conflict-based [Reynolds et al. FMCAD’14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that make E

unsatisfiable

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Since E, P (b) ∨R(b) |= ⊥, this strategy will return {{x 7→ b}}.

• Formally:

c(E, ∀x̄. φ): 1. Either return {σ} where E, φσ |= ⊥, or return ∅.

18
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Impact of conflict-based instantiation [Reynolds et al. FMCAD’14]

* experiments across 12468 benchmarks from TPTP, SMT-LIB, and Sledghammer. 19



Impact of conflict-based instantiation [BFR17]
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veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

• Improvements on CVC4 came from discarding from trigger-based strategy instances already entailed by the formula: if

E |= φ[t̄], for ∀x. φ[x].

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks annotated as unsatisfiable, with 30s timeout.
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Caveats of conflct-based instantiation

• The search for the instantiations in practice is more expensive

• The technique is inherently incomplete: it only considers a single formula at a time

• E = {p(a)} and Q = {∀x. q(x), ∀yz. ¬q(y) ∨ ¬p(z)}.
There are no substitutions σ, ρ such that E |= ¬q(x)σ or E |= q(y)ρ ∧ p(z)ρ, even though E ∪ Q is

clearly inconsistent.

• It should be seen as a complement to other techniques that are more general

21



Instantiation strategies: model-based [Ge and de Moura CAV’09]

Model-based instantiation (MBQI): build a candidate model for E ∪ Q and instantiate with

counter-examples from model checking

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• Assume that PM = λx. ite(x ≃ c, ⊤, ⊥) and RM = λx.⊥.

• SinceM ̸|= P (a) ∨R(a), this strategy may return {{x 7→ a}}.

• Formally:

m(E, ∀x̄. φ): 1. Construct a modelM for E.

2. Return {{x̄ 7→ t̄ }} where t̄ ∈ T(E) andM ̸|= φ{x̄ 7→ t̄ },
or ∅ if none exists.
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Instantiation strategies: model-based [Ge and de Moura CAV’09]

• MBQI is complete for a number of fragments

• Bernays-Schönfinkel

• Essentially Uninterpreted Formulas: “theory variables” only appear as arguments of uninterpreted

functions

• It is a good strategy to complement incomplete techniques

• One should note that by its nature it is generally more successful on satisfiable problems

23



A unifying framework for classic

instantiation techniques



Let’s look deeper into the problem (with T = EUF)

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

• Each literal in the right hand side delimits possible σ

• f(x) ≃ f(z): either x ≃ z or x ≃ a ∧ z ≃ c or x ≃ c ∧ z ≃ a

• g(y) ̸≃ h(z): y ≃ b ∧ z ≃ c

σ = {x 7→ c, y 7→ b, z 7→ c}

or

σ = {x 7→ a, y 7→ b, z 7→ c}
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E-ground (dis)unification [BFR17]

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t.

E |= Lσ

• Solution space can be restricted into ground terms from E ∪ L

• NP-complete

• NP: solutions can checked in polynomial time

• NP-hard: reduction of 3-SAT into the entailment

• Variant of classic (non-simultaneous) rigid E-unification

s1σ ≃ t1σ, . . . , snσ ≃ tnσ |= uσ ≃ vσ

25



Casting instantiation techniques: Trigger-based

E |= (u1 ≃ y1 ∧ · · · ∧ um ≃ ym)σ

where {u1, . . . , um} is a trigger for ∀x̄. ψ ∈ Q and each yiσ ∈ T(E)

• • E = {f(a) ≃ g(b), h(a) ≃ b, f(a) ≃ f(c)}
• Q = {∀x. f(x) ̸≃ g(h(x))}, Trigger={f(x)}

• Solving E |= (f(x) ≃ y)σ yields

• σ1 = {y 7→ f(a), x 7→ a}
• σ2 = {y 7→ f(c), x 7→ c}

• The instantiation lemmas are:

• ∀x. f(x) ̸≃ g(h(x)) → f(a) ̸≃ g(h(a))

• ∀x. f(x) ̸≃ g(h(x)) → f(c) ̸≃ g(h(c))

26



Casting instantiation techniques: Conflict-based

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

• Consider

• E = {f(a) ≃ g(b), h(a) ≃ b, f(a) ≃ f(c)}
• Q = {∀x. f(x) ̸≃ g(h(x))}

• Solving E |= (f(x) ≃ g(h(x)))σ yields

• σ = {x 7→ a}

• The instantiation lemma is:

• ∀x. f(x) ̸≃ g(h(x)) → f(a) ̸≃ g(h(a))

27



Casting instantiation techniques: Model-based

Etot |= ¬ψσ, for some ∀x̄. ψ ∈ Q

where Etot is a total extension of E s.t.:

▶ ground terms not in E necessary for evaluating Q are added

▶ all terms in T(E) not asserted equal are made disequal

• Consider

• E = {f(a) ≃ g(b), h(a) ≃ b}
• Q = {∀x. f(x) ̸≃ g(x), ∀xy. ψ}, e = a as a default value, and

Etot = E ∪ {a ̸≃ b, a ̸≃ f(a), b ̸≃ f(a)}
∪ {f(b) ≃ f(a), f(f(a)) ≃ f(a), g(a) ≃ a, g(f(a)) ≃ a} ∪ {. . . }

• Solving {. . . , f(a) ≃ g(b), f(b) ≃ f(a), . . . } |= f(x) ≃ g(x)σ yields

• σ = {x 7→ b}
• The lemma ∀x. f(x) ̸≃ g(x)→ f(a) ̸≃ g(a) prevents the same Etot

28



How to solve the E-ground (dis)unification problem?

Entailment conditions:

• E |= (x ≃ y)σ

• xσ = yσ or

• some t1, t2 s.t. xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x occurs in f(s1, . . . , sn),

• some t1, t2 ∈ T(E) s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (x ≃ f(s1, . . . , sn))σ, x does not occur in f(s1, . . . , sn) and

• xσ = f(s1, . . . , sn)σ or

• some t1, t2 s.t. xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

• E |= (f(u1, . . . , un) ≃ g(v1, . . . , vn))σ and

• f = g and E |= u1σ ≃ v1σ, . . . , E |= unσ ≃ vnσ or

• some t1, t2 ∈ T(E) s.t. [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and g(v1, . . . , vn)σ ∈ [t2]

• E |= (u ̸≃ v)σ

• some t1, t2 ∈ T(E) s.t. E |= t1 ̸≃ t2, uσ ∈ [t1], and vσ ∈ [t2]
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Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and terminating calculus for

solving E-ground (dis)unification

⊕ (allows for) Goal-oriented instantiation technique

⊕ Efficient

⊖ Ad-hoc Versatile framework, recasting many instantiation techniques as a CCFV problem
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Finding solutions σ for E |= Lσ

E |= Lσ

f(a) ≃ f(c) ∧ g(b) ̸≃ h(c) |= (f(x) ≃ f(z) ∧ g(y) ̸≃ h(z))σ

f(x) ≃ f(z) ∧ g(y) ̸≃ h(z)

f(x) ≃ f(z) ∧ z ≃ c ∧ y ≃ b

f(x) ≃ f(z) ∧ z ≃ c

f(x) ≃ f(c)

x ≃ a

⊤

x ≃ a, y ≃ b, z ≃ c

x ≃ c

⊤

x ≃ c, y ≃ b, z ≃ c

y ≃ b, z ≃ c

y ≃ b

∅
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Implementation

• Model minimization

• Relevancy

• Prime implicant

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

• Top symbol indexing of E-graph from ground congruence closure

f →


f([t1], . . . , [tn])

. . .

f([t′1], . . . , [t
′
n])

• E |= f(x)σ ≃ t only if [t] contains some f(t′)

E |= f(x)σ ≃ g(y)σ only if some [t] contains some f(t′) and some g(t′′)

• Bitmasks for fast checking if symbol has applications in congruence class

• Mapping from congruence class to classes it’s disequal to
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Implementation

• Selection strategies

E |= f(x, y) ≃ h(z) ∧ x ≃ t ∧ . . .

• Eagerly checking whether constraints can be discarded

• After assigning x to t, the remaining problem is normalized

E |= f(t, y) ≃ h(z) ∧ . . .

• E |= f(t, y)σ ≃ h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ≃ t′
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Effective enumerative

instantiation



Instantiation and the Herbrand Theorem

• The earliest theorem provers relied on Herbrand instantiation

• Instantiate with all possible terms in the Herbrand universe (all possible well-sorted ground terms in the

formula’s signature)

• Enumerating all instances is unfeasible in practice!

• Enumerative instantiation was then discarded

But enumerative instantiation can be effective for state-of-the-art SMT

• strengthened version of the Herbrand theorem

• efficient implementation techniques
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Theorem (Strengthened Herbrand [Kan63; RBF18])

If there exists an infinite series of finite satisfiable sets of ground literals Ei and of finite sets of

ground instances Qi of Q such that

• Qi =
{
φσ | ∀x̄. φ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T(Ei)

}
;

• E0 = E, Ei+1 |= Ei ∪ Qi;

then E ∪ Q is satisfiable in the empty theory with equality.

Direct application at

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

• Quantifier-free solver enumerates assignments E ∪ Q

• Instantiation module generates instances of Q
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Enumerative instantiation

u(E, ∀x̄. φ):
1. Choose an ordering ⪯ on tuples of quantifier-free terms.

2. Return {{x̄ 7→ t̄}} where t̄ is a minimal tuple of terms w.r.t ⪯,
such that t̄ ∈ T(E) and E ̸|= φ{x̄ 7→ t̄ }, or ∅ if none exist.

• E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

• u chooses an ordering on tuples of terms, say the lexicographic extension of ⪯ where a ≺ b ≺ c.

• Since E does not entail P (a) ∨R(a), this strategy returns {{x 7→ a}}.
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u as an alternative for m

• Enumerative instantiation plays a similar role to MBQI

• It can also serve as a “completeness fallback” to c and e

• However, u has advantages over m for UNSAT problems

• Moreover it is significantly simpler to implement

• No model building

• No model checking
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Example

E = {¬P (a), R(b), S(c)}
Q = {∀x. R(x) ∨ S(x), ∀x. ¬R(x) ∨ P (x), ∀x. ¬S(x) ∨ P (x)}

M =


PM = λx.⊥,
RM = λx. ite(x ≃ b, ⊤, ⊥),

SM = λx. ite(x ≃ c, ⊤, ⊥)

 , a ≺ b ≺ c

φ x s.t. M ̸|= φ x s.t. E ̸|= φ m(E,∀x. φ) u(E, ∀x. φ)
R(x) ∨ S(x) a a {{x 7→ a}} {{x 7→ a}}
¬R(x) ∨ P (x) b a, b, c {{x 7→ b}} {{x 7→ a}}
¬S(x) ∨ P (x) c a, b, c {{x 7→ c}} {{x 7→ a}}

• u instantiates uniformly so that new terms are introduced less often

• m instantiates depending on how model was built

• Moreover, u leads to E ∧ Q{x 7→ a} |= ⊥
• m requires considering E′ which satisfies E along the new instances
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Implementation

Implementing enumerative instantiation efficiently depends on:

• Restricting enumeration space

• Avoiding entailed instantiations

• Term ordering to introduce new terms less often
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CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102
C

PU
tim

e
(s

)
e+u
e;u
e+m
e;m
e
u
m

• 42 065 benchmarks, being 14 731 from TPTP and 27 334 from SMT-LIB

• e+u stands for “interleave e and u”, while e;u for “apply e first, then u if it fails”

• All CVC4 configurations have “c;” as prefix
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Impact of u on satisfiable benchmarks

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829

UF 7293 39 42 42 0 70 69 65

Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161

• As expected, m greatly outperforms u

• Nevertheless u answers SAT half as often as m in empty theory

• Moreover, u solves 13 problems m does not
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Impact of u on unsatisfiable benchmarks

• u solves 3 043 more benchmarks than m

• u solves 1 737 problems not solvable by e

• Combinations of e with u or m lead to significant gains

• e+u is best configuration, solving 253 more problems than e+m and 1 295 more than e

• Some benchmark families only solvable due to enumeration

• Overall the enumerative strategies lead to a virtual portfolio of CVC4 solving 712 more problems
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Comparison against other instantiation-based SMT solvers

6000 8000 10000 12000 14000 16000 18000 20000 22000
10−1

100

101

102
C

PU
tim

e
(s

)
uport-i
mport-i
z3 mport-i
e
z3 e

• Portfolios run without interleaving strategies (not supported by Z3)

• Z3 uses several optimizations for e not implemented in CVC4

• Z3 does not implement c
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Restricting Enumeration Space

• Strengthened Herbrand Theorem allows restriction to T(E)

• Sort inference [CS03] reduces instantiation space by computing more precise sort information

• E ∪ Q = {a ̸≃ b, f(a) ≃ c} ∪ {P (f(x))}
• a, b, c, x : τ

• f : τ → τ and P : τ → Bool.

• This is equivalent to Es ∪ Qs = {a1 ̸≃ b1, f12(a1) ≃ c2} ∪ {P2(f12(x1))}
• a1, b1, x1 : τ1
• c2 : τ2
• f12 : τ1 → τ2 and P : τ2 → Bool

• u would derive e.g. {x 7→ c} for E ∪ Q, while for Es ∪ Qs the instantiation {x1 7→ c2} is not well-sorted.
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Term Ordering

Instantiations are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if


maxn

i=1 ti ≺ maxn
i=1 si, or

maxn
i=1 ti = maxn

i=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order ⪯ on ground terms.

If a ≺ b ≺ c, then
(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c, b) ≺ (c, c)

• We consider instantiations with c only after considering all cases with a and b

• Goal is to introduce new terms less often

• Order on T(E) fixed for finite set of terms t1 ≺ . . . ≺ tn
• Instantiate in order with t1, . . . , tn

• Then choose new non-congruent term t ∈ T(E) and have tn ≺ t
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Fair and Adventurous Enumeration of Quantifier Instantiations [JBFR21]

• Recently we tried a number of different orderings for tuples

• Significant orthogonality, no clear winner

• In the process we improved the generation of instances in u to remove redundant tuples

• A subset of the tuple is enough to lead to an entailed instance

• A subset of the tuple is enough to lead an equivalent, modulo rewriting, instance

• UF, UFLIA, and UFNIA, totaling 31314 problems
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So what quantifier handling

techniques do I use if I have a

quantified SMT problem?



A flowchat to pick quantifier handling strategies, at least in cvc5

(courtesy of Andy Reynolds)
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Conclusion

• SMT solvers mainly use instantiation techniques to handle quantified formulas

• They are often incomplete, slow, or fragile

• But they also enable many successful use cases in e.g. software verification and automation for proof

assistants

• There are many options, ask developers.
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An introduction to SMT solving with quantifiers

Haniel Barbosa, Universidade Federal de Minas Gerais

SAT/SMT/AR Summer School

2024–06–27, LORIA–Inria, Université de Lorraine, Nancy, FR



CCFV calculus

Eσ ⊩E x ̸≃ y ∧ C
Dvar

Eσ ⊩E

∨
[t], [t′]∈Ecc, E|=t ̸≃t′

(x ≃ t ∧ y ≃ t
′ ∧ C)

Eσ ⊩E x ̸≃ f(s̄) ∧ C
Dfapp

Eσ ⊩E

∨
[t], [t′]∈Ecc,

E|=t ̸≃t′, f(t̄′ )∈[t′]

(x ≃ t ∧ s1 ≃ t
′
1 ∧ · · · ∧ sn ≃ t

′
n ∧ C)

Eσ ⊩E f(ū) ̸≃ g(s̄m) ∧ C
Dgen

Eσ ⊩E

∨
[t], [t′]∈Ecc, E|=t ̸≃t′,
f(t̄)∈[t], g(t̄′m)∈[t′]

(
u1 ≃ t1 ∧ · · · ∧ un ≃ tn ∧
s1 ≃ t′1 ∧ · · · ∧ sm ≃ t′m ∧ C

)

Eσ ⊩E C1 ∨ C2

Split
Eσ ⊩E C1 Eσ ⊩E C2

Eσ ⊩E ℓ ∧ C
Yield if E |= ℓ

Eσ ⊩E C

Eσ ⊩E ℓ ∧ C
Fail

Eσ ⊩E ⊥
if ℓ is ground and E ̸|= ℓ
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