

Congruence Closure with Free Variables (Work in Progress)

Haniel Barbosa, Pascal Fontaine

INRIA Nancy – VeriDis
Université de Lorraine
UFRN

2015–08–24

Outline

- SMT solving
- Congruence Closure with Free Variables
- Extensions and next tasks

SMT solving

First-order logic modulo theories:

$$\varphi = \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\}$$

SMT solving

First-order logic modulo theories:

$$\varphi = \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\}$$

Through SAT solving one may obtain that $\mathcal{L} \cup \mathcal{Q} \models \varphi$, for

$$\begin{aligned} \mathcal{L} &= \{f(c) \approx a, f(a) \approx b, f(b) \not\approx f(a)\} \\ \mathcal{Q} &= \{\forall x_1, x_2. (f(x_1) \not\approx a \vee f(x_2) \approx b)\} \end{aligned}$$

SMT solving

First-order logic modulo theories:

$$\varphi = \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\}$$

Through SAT solving one may obtain that $\mathcal{L} \cup \mathcal{Q} \models \varphi$, for

$$\begin{aligned} \mathcal{L} &= \{f(c) \approx a, f(a) \approx b, f(b) \not\approx f(a)\} \\ \mathcal{Q} &= \{\forall x_1, x_2. (f(x_1) \not\approx a \vee f(x_2) \approx b)\} \end{aligned}$$

Through ground reasoning, \mathcal{L} is shown satisfiable.

What about \mathcal{Q} ?

SMT solving

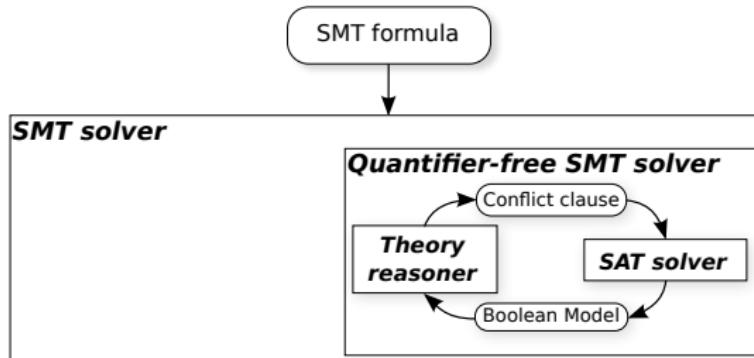
How to handle quantified formulas in the SMT context?

- FOL with equality is semi-decidable, but considering theories frequently leads to undecidability.
- Reasoning through incomplete techniques relying on decidable fragments — *instantiation*.

SMT solving

How to handle quantified formulas in the SMT context?

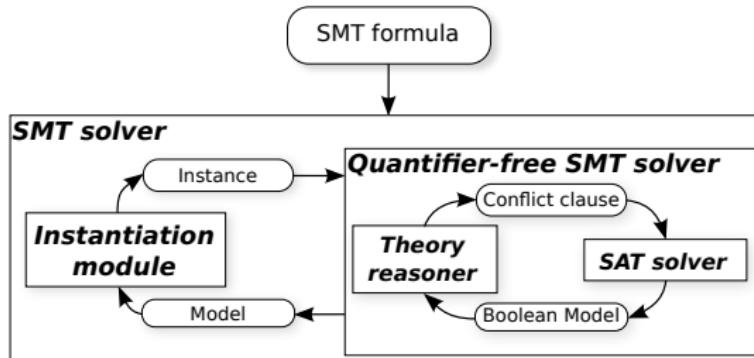
- FOL with equality is semi-decidable, but considering theories frequently leads to undecidability.
- Reasoning through incomplete techniques relying on decidable fragments — *instantiation*.



SMT solving

How to handle quantified formulas in the SMT context?

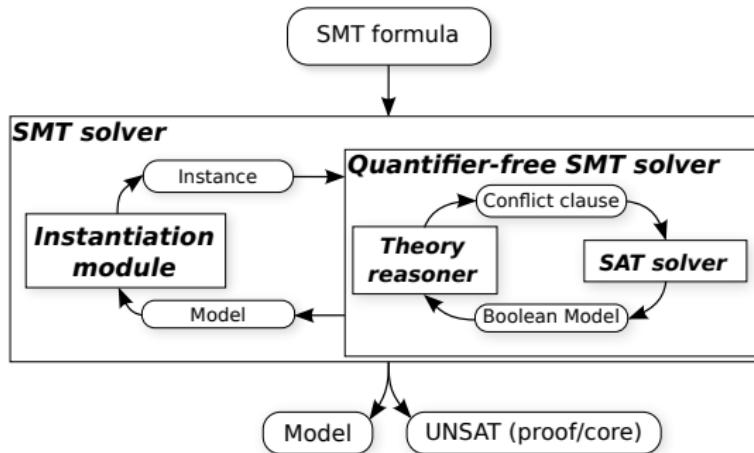
- FOL with equality is semi-decidable, but considering theories frequently leads to undecidability.
- Reasoning through incomplete techniques relying on decidable fragments — *instantiation*.



SMT solving

How to handle quantified formulas in the SMT context?

- FOL with equality is semi-decidable, but considering theories frequently leads to undecidability.
- Reasoning through incomplete techniques relying on decidable fragments — *instantiation*.



With too many instances available, their selection becomes crucial.

Ground conflicting instances generation

Context (ground model)

- Given a formula φ and a theory \mathcal{T} , SMT solver derives, if any, groundly \mathcal{T} -satisfiable sets of literals \mathcal{L} and \mathcal{Q} s.t. $\mathcal{L} \cup \mathcal{Q} \models \varphi$.
- \mathcal{L} is a set of ground literals.
- \mathcal{Q} is a set of quantified formulas.

Ground conflicting instances

[Reynolds et al., 2014]

- Derive, for some $\forall \mathbf{x}. \psi \in \mathcal{Q}$, ground substitutions σ s.t. $\mathcal{L} \models \neg \psi \sigma$.
- As instances $\forall \mathbf{x}. \psi \rightarrow \psi \sigma$ refute $\mathcal{L} \cup \mathcal{Q}$, their addition to φ require the derivation of a new ground model, if any.

Congruence Closure with Free Variables

- Finding ground conflicting instances is equivalent to solving a non-simultaneous E -unification problem (NP-complete).
[Tiwari et al., 2000]
- It has also been shown to be amenable to the use of congruence closure procedures.
- Algorithm CCFV: extends congruence closure decision procedure, being able to perform unification on free variables.

Finding substitutions

It computes, **if any**, a sequence of substitutions $\sigma_0, \dots, \sigma_k$ such that, for $\neg\psi = l_1 \wedge \dots \wedge l_k$,

$$\sigma_0 = \emptyset; \sigma_{i-1} \subseteq \sigma_i \text{ and } \mathcal{L} \models l_i \sigma_i$$

which guarantees that $\mathcal{L} \models \neg\psi \sigma_k$.

Unification

Adapts the *recursive descent E-unification* algorithm in [Baader et al., 2001].

Example

$$\begin{aligned}\varphi &= \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\} \\ \mathcal{L} &= \{f(c) \approx a, f(a) \approx b, f(b) \not\approx f(a)\}\end{aligned}$$

Example

$$\varphi = \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\}$$

$$\mathcal{L} = \{f(c) \approx a, f(a) \approx b, f(b) \not\approx f(a)\}$$

$$\neg\psi = (f(x_1) \approx a \wedge f(x_2) \not\approx b)$$

Example

$$\varphi = \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\}$$

$$\mathcal{L} = \{f(c) \approx a, f(a) \approx b, f(b) \not\approx f(a)\}$$

$$\neg\psi = (f(x_1) \approx a \wedge f(x_2) \not\approx b)$$

① Evaluates $f(x_1) \approx a$:

- since $f(c) \in [a]$, unifies $\langle f(x_1), f(c) \rangle$.
- leads to the substitution $\sigma_1 = \{x_1 \mapsto c\}$, such that $\mathcal{L} \models (f(x_1) \approx a) \sigma_1$.

Example

$$\varphi = \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\}$$

$$\mathcal{L} = \{f(c) \approx a, f(a) \approx b, f(b) \not\approx f(a)\}$$

$$\neg\psi = (f(x_1) \approx a \wedge f(x_2) \not\approx b)$$

① Evaluates $f(x_1) \approx a$:

- since $f(c) \in [a]$, unifies $\langle f(x_1), f(c) \rangle$.
- leads to the substitution $\sigma_1 = \{x_1 \mapsto c\}$, such that $\mathcal{L} \models (f(x_1) \approx a) \sigma_1$.

② Evaluates $f(x_2) \not\approx b$:

- since $f(a) \in [b]$, if the pair $\langle f(x_2), f(b) \rangle$ is unifiable then the resulting σ is conflicting.
- leads to the substitution $\sigma_2 = \{x_1 \mapsto c, x_2 \mapsto b\}$ such that $\mathcal{L} \models (f(x_2) \not\approx b) \sigma_2$.

Example

$$\varphi = \left\{ \begin{array}{l} f(c) \approx a \vee c \approx d, f(a) \approx b, f(b) \not\approx f(a), \\ \forall x_1, x_2. f(x_1) \not\approx a \vee f(x_2) \approx b \end{array} \right\}$$

$$\mathcal{L} = \{f(c) \approx a, f(a) \approx b, f(b) \not\approx f(a)\}$$

$$\neg\psi = (f(x_1) \approx a \wedge f(x_2) \not\approx b)$$

① Evaluates $f(x_1) \approx a$:

- since $f(c) \in [a]$, unifies $\langle f(x_1), f(c) \rangle$.
- leads to the substitution $\sigma_1 = \{x_1 \mapsto c\}$, such that $\mathcal{L} \models (f(x_1) \approx a) \sigma_1$.

② Evaluates $f(x_2) \not\approx b$:

- since $f(a) \in [b]$, if the pair $\langle f(x_2), f(b) \rangle$ is unifiable then the resulting σ is conflicting.
- leads to the substitution $\sigma_2 = \{x_1 \mapsto c, x_2 \mapsto b\}$ such that $\mathcal{L} \models (f(x_2) \not\approx b) \sigma_2$.

CCFV returns $\sigma = \{x_1 \mapsto c, x_2 \mapsto b\}$, which is a ground conflicting substitution, since $\mathcal{L} \wedge \psi \sigma$ is groundly unsatisfiable.

Algorithm

```
proc CCFV( $\mathcal{L}, \psi$ )
   $\mathfrak{C} \leftarrow \{s \approx t \mid s \approx t \in \mathcal{L}\}; \quad \mathfrak{D} \leftarrow \{s \not\approx t \mid s \not\approx t \in \mathcal{L}\}; \quad \Delta_x \leftarrow \emptyset \quad // \text{Init}$ 
  foreach  $l \in \neg\psi$  do
    if not(HANDLE( $\mathfrak{C}, \mathfrak{D}, \Delta_x, l$ )) then
       $\Delta_x \leftarrow \Delta_x \cup \{x \mapsto \text{SEL}(x) \mid x \in x\}$ 
      if  $\emptyset \in \Delta_x$  then return  $\emptyset$  // No  $\sigma$  s.t.  $\mathcal{L} \models \neg\psi\sigma$ 
      RESET( $\mathfrak{C}, \mathfrak{D}, \neg\psi$ ) // Backtracking
    return  $\{x \mapsto \text{SEL}(x) \mid x \in x\}$  //  $\mathcal{L} \models \neg\psi\sigma$ 

proc HANDLE( $\mathfrak{C}, \mathfrak{D}, \Delta_x, l$ )
  match  $l$  :
     $u \approx v$  :
      if  $\mathfrak{C} \cup \mathfrak{D} \models u \not\approx v$  then return  $\perp$  // Checks consistency
       $\mathfrak{C} \leftarrow \mathfrak{C} \cup \{u \approx v\}$  // Updates  $\mathfrak{C} \cup \mathfrak{D}$ 
     $u \not\approx v$  : ...
   $\Lambda \leftarrow (\text{UNIFY } \delta \text{ } l) \setminus \mathfrak{C} \Delta_x \quad // \mathcal{L} \models l\sigma, \text{ for every } \sigma \in \Lambda$ 
  if  $\Lambda \neq \emptyset$  then
    let  $\sigma \in \Lambda$  in
       $\mathfrak{C} \leftarrow \mathfrak{C} \cup \bigcup_{x \in \text{dom}(\sigma)} \{x \approx x\sigma\}$ 
    return  $\top$ 
  return  $\perp$ 
```

Extensions

- CCFV only works in very restricted scenarios.

Extensions

- CCFV only works in very restricted scenarios.
- Basis for broader procedures.
 - E-matching
 - MBQI

Extensions

- CCFV only works in very restricted scenarios.
- Basis for broader procedures.
 - E-matching
 - MBQI
- Simultaneous (Bounded) Rigid E-Unification [Backeman et al., 2015]

Extensions

- CCFV only works in very restricted scenarios.
- Basis for broader procedures.
 - E-matching
 - MBQI
- Simultaneous (Bounded) Rigid E-Unification [Backeman et al., 2015]
- Saturation based procedures (Inst-Gen-Eq, Hierarchic Superposition, ...)

Next tasks

- Continue implementation.
- Integrating extensions into general framework.
- Handling arithmetic reasoning together with conflict driven instantiation.

More details in the paper: <http://www.loria.fr/~hbarbosa/quantify2015.pdf>