
Congruence Closure with Free Variables
Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds

Satisfiability Modulo Theories (SMT)

I The problem of assessing whether a FOL formula has a model consistent
with background theories

I CDCL(T ) framework solves SMT by combining SAT and theory solvers

I Quantifier reasoning generally through heuristic instantiation based on E-
matching

Contributions

A unifying framework for instantiating quantified formulas with equality and
uninterpreted functions [Barbosa, Fontaine, Reynolds. TACAS’17]

I Formalizing underlying problem for instantiation in SMT

I Lifting congruence closure to accommodate free variables

I Casting existing instantiation techniques in framework

I Techniques for efficient implementation

E-ground (dis)unification

Framework is based on the problem of E-ground (dis)unification

Definition: Given conjunctive sets of equality literals E and L, with E
ground, finding a substitution σ s.t. E |= Lσ

I Solution space can be restricted into ground terms from E ∪ L
I NP-complete

BNP: solutions can checked in polynomial time
BNP-hard: reduction of 3-SAT into the entailment

I Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ

Congruence Closure with Free Variables (CCFV)

A sound, complete and terminating calculus for solving E-ground
(dis)unification

I Search for solutions as a series of AND-OR constraints depending on the
entailment of conditions of literals in L

I Congruence closure as a core element

BAll terms inferred equal are kept in the same class
BConstraints to be entailed are normalized according to partial solutions

I Different possibilities for building solutions are handled with branching
and backtracking

Finding solutions σ for E |= Lσ:

E |= Lσ

f (a) ' f (c) ∧ g(b) 6' h(c) |= (f (x) ' f (z) ∧ g(y) 6' h(z))σ

f (x) ' f (z) ∧ g(y) 6' h(z)

f (x) ' f (z) ∧ z ' c ∧ y ' b

f (x) ' f (z) ∧ z ' c

f (x) ' f (c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

Existing instantiation techniques as special cases

BConflict-based instantiation [RTM14]

⊕CCFV provides formal guarantees and more clear extensions
BE-matching based heuristic instantiation [DNS05; MB07]

⊕CCFV allows to easily discard instances already entailed by E
BModel-based instantiation [GM09; RTG+13]

⊕No need for a secondary ground SMT solver
⊕No need to guess solutions

Implementation techniques

I Model minimisation
I Top symbol indexing of E-graph from ground congruence closure
I Selection strategies

E |= f (x, y) ' h(z) ∧ x ' t ∧ . . .

I Eagerly checking whether constraints can be discarded

Experiments and Conclusions

I CCFV has been implemented in the SMT solvers veriT and CVC4
I Techniques based on CCFV:

t : trigger instantiation through CCFV;
c : conflict based instantiation through CCFV;
b : breadth-first version of CCFV rather than the depth-first one;
e : eagerly discarding branches with unmatchable applications;
d : discards already entailed trigger based instances

I Comparison of instantiation based SMT solvers

Logic Class Z3 cvc+d cvc+e cvc verit+tc verit+tcb verit+t verit

UF
grasshopper 418 411 420 415 430 435 418 413
sledgehammer 1249 1438 1456 1428 1277 1278 1134 1066

UFIDL all 62 62 62 62 58 58 58 58

UFLIA

boogie 852 844 834 801 706 690 660 661
sexpr 26 12 11 11 7 7 5 5
grasshopper 341 322 326 319 356 361 340 335
sledgehammer 1581 1944 1953 1929 1790 1799 1620 1569
simplify 831 766 706 705 803 801 735 690
simplify2 2337 2330 2292 2286 2307 2303 2291 2177

Total 7697 8129 8060 7956 7734 7736 7261 6916

veriT: + 800 out of 1 785 unsolved problems

CVC4: + 200 out of 745 unsolved problems
Benchmarks in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB,

which have 8,701 benchmarks annotated as unsatisfiable that are not trivially solved by

all systems. Timeout is 30s.

References

[BFR17] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. “Congruence Closure with Free Vari-
ables”. In: Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by Axel
Legay and Tiziana Margaria. Vol. 10206. Lecture Notes in Computer Science. 2017, pp. 214–230.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for Program Check-
ing”. In: J. ACM 52.3 (2005), pp. 365–473.

[GM09] Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified Formulas in Satisfia-
biliby Modulo Theories”. In: Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and
Oded Maler. Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306–320.

[MB07] Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning. Vol. 4603. Lecture
Notes in Computer Science. Springer, 2007, pp. 183–198.

[RTG+13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krsti, Morgan Deters, and Clark
Barrett. “Quantifier Instantiation Techniques for Finite Model Finding in SMT”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by Maria Paola Bonacina. Vol. 7898.
Lecture Notes in Computer Science. Springer, 2013, pp. 377–391.

[RTM14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. “Finding conflicting in-
stances of quantified formulas in SMT”. In: Formal Methods In Computer-Aided Design (FMCAD).
IEEE, 2014, pp. 195–202.


