Challenges in SMT Proof Production and Checking for
Arithmetic Reasoning

Haniel Barbosa'’

"Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract

Satisfiability Modulo Theories (SMT) solvers are widely used as backbones of formal methods tools
in a variety of applications, often safety-critical ones. These tools rely on the solver’s correctness to
guarantee the validity of their results. Producing and checking proofs is the de facto standard to ensure
the correctness of SMT solvers independently from implementations, which are often prohibitively
difficult to verify. Arithmetic reasoning is one of the foundations of SMT reasoning, and therefore it
is essential to support proof production and checking for it. In this extended abstract, to accompany
a keynote talk at the 2023 SC-Square Workshop, we survey recent work (both the author’s and from
the literature) and discuss challenges on the production and checking of proofs from SMT solvers for
arithmetic reasoning.

Keywords
Satisfiability Modulo Theories, Symbolic Computation, Proof Production, Proof Checking

1. Introduction

State-of-the-art SMT solvers, in order to optimize performance, generally have large and complex
codebases written in system languages. This makes it hard to guarantee that the solver results
are not compromised by implementation issues, which can happen despite the best efforts of
developers. To increase trust, a possible solution is to formally verify or to qualify the solvers.
However, these approaches are costly and once accomplished tend to “freeze” the systems, since
changes require a new verification or qualification process. Moreover, the sheer complexity of
the task frequently leads to compromises, with systems being less performant than the state of
the art, thus hindering their usability.

An alternative is to make confidence in the results independent from the implementation via
machine-checkable certificates of the correctness of these results. For SMT solvers, certificates
are models, for satisfiable results, and proofs for unsatisfiable results. While satisfiable results
generally denote a desired condition is not valid, unsatisfiable results ensure it is, which
significantly increases the importance of proofs. But while model production is well established
in state-of-the-art SMT solving (although in the presence of, for example, transcendental
functions, there are challenges [1]), producing proofs is not.

8th International Workshop on Satisfiability Checking and Symbolic Computation, July 28, 2023, Tromse, Norway,
Collocated with ISSAC 2023

Q& hbarbosa@dcc.ufmg.br (H. Barbosa)

& http://hanielbarbosa.com/ (H. Barbosa)

® 0000-0003-0188-2300 (H. Barbosa)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:hbarbosa@dcc.ufmg.br
http://hanielbarbosa.com/
https://orcid.org/0000-0003-0188-2300
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The main challenge for producing proofs is to justify the combination of heterogeneous,
theory-specific algorithms used by solvers to derive unsatisfiability, while keeping the solver
performant and providing enough details to allow scalable proof checking, i.e., checking that
is fundamentally simpler than solving. We have tackled this issue in previous work [2, 3] and
nowadays the cve5 SMT solver [4] is a state-of-the-art solver that can effectively produce proofs
for significant parts of their reasoning, without sacrificing performance too much.

Once proofs are produced, the challenge is to check they are correct. Proof checkers are given
the proofs produced by the solvers and validate whether the steps in the proof are correct with
relation to the proof calculus of which the proof is an instance. To maximize trustworthiness,
the proof checker should be small and simple (ideally, even formally verified). Alternatively,
the proof can be embedded in a highly trusted system such as a skeptical interactive theorem
prover. The SMT community is increasingly embracing this approach, with proof production
becoming a major focus in recent years [3, 5].

When considering interactive theorem provers or formally verified checkers as the targets of
SMT proofs, the difficulty is to embed in these systems the formal calculus representing the
proofs, which requires proving this calculus correct with relation to the logic of these systems.
This task is already complex for the overall reasoning performed by SMT solvers [6, 7], but
even more so for the formal calculi used when solving for some theories, such as strings [8]
and, specially, non-linear arithmetic [9].

In this paper we discuss the state of the art and current challenges in proof production and
proof checking for SMT solvers, in particular for their arithmetic reasoning.

2. Proof production in SMT solvers

Recently [3] we introduced a flexible proof-production architecture for SMT solvers, which is
shown in Figure 1 (from [3]). We summarize this architecture below, but full details can be seen
in [3].

The proof architecture is intertwined with the CDCL(T") architecture [10], the most common
architecture of SMT solvers. This architecture for producing proofs emphasizes modularity,
given the highly modular design of SMT solvers. Proofs are produced and stored by each solving
component, which also guarantee they follow the structure for proofs of that component, as
described below. Once the proofs need to be combined, a post-processor does so guaranteeing
that they are compatible.

The modules in Figure 1 are used to solve an input formula ¢ in the following manner:
the pre-processor receives and simplifies it in a variety of ways into formulas ¢1, ..., ¢,.
For each ¢;, the pre-processor stores a proof P : ¢ — ¢; justifying its derivation from .
The propositional engine receives ¢, ..., ¢, and clausifies them into C1 A - - - A C}. A proof
P : b — C; is stored for each clause C;. Note that several clauses may derive from each formula.
Corresponding propositional clauses C}, ..., C7, where first-order atoms are abstracted as
Boolean variables, are sent to the SAT solver, which checks whether their conjunction is
satisfiable. The propositional engine and the theory engine work in a loop where the SAT solver
asserts literals, which witness the satisfiability of C7, ..., C}, and the theory engine checks
their satisfiability modulo a combination of theories T'. If the literals are T™-unsatisfiable, a lemma

Pre-processor [«~—— ¢

D1 - Pn L
m
Propositional Engine Theory Engine
— Clausifier Theory Combination
P:p— ¢ l
e . / .
, Pin = Oy 1 P: Ly /Ly } Lo\ P: Lo
P:p— ¢, : SAT Solver T Ts
P:Ym = Cn s
Y P:C— 1 L, ‘P: Ly
L~ Post-processor T
. Asserted Literals
P:op— 1 1
SMT Proof Post-processor P:p— 1

Figure 1: Flexible proof-production architecture for CDCL(T)-based SMT solvers. In the above, ¢; €
{¢, L} for each i, with v; not necessarily distinct from ;.

L is sent to the propositional engine, together with a proof P : L of its T-validity. This lemma
will force the SAT solver to search for a different way to satisfy the clausified formulas. If this is
not possible, then all the clauses C', ..., Cy, generated until then are jointly unsatisfiable, and
the SAT solver yields a proof P : C} A --- A Cy, — L. Note that the proof is in terms of the
first-order clauses, as are the derivation rules that conclude L from them. The propositional
abstraction does not need to be represented in the proof.

The post-processor of the propositional engine connects the SAT assumptions with the
clausifier proofs, building a proof P : ¢1 A--- A ¢, — L. Since theory lemmas are T-valid, the
resulting proof only has preprocessed formulas as assumptions. The final proof is built by the
SMT solver’s post-processor combining this proof with the preprocessing proofs P : ¢ — ¢;.
The resulting proof P : ¢ — L justifies the T-unsatisfiability of the input formula.

The arithmetic reasoning performed by the solver happens in the pre-processor, where
rewrite rules are used to simplify arithmetic terms occurring in the input, and in the theory
solvers, where the main arithmetic reasoning takes place. We will focus on the current state and
challenges related to arithmetic reasoning in the theory solvers, where we discuss separately
about linear (Section 2.1) and non-linear reasoning (Section 2.2), given the significant differences
between producing and checking proofs for them. The arithmetic pre-processing reasoning is
comparatively simple and less prominent, and the challenges are mostly related to the handling
of numerous rewrite rules [11], although some particular pre-processing techniques, such as
aggressive ITE elimination, can be quite challenging.

We also note that the majority of the arithmetic reasoning in SMT solvers takes place on

quantifier-free formulas, since solvers employ dedicated procedures for logic fragments without
quantifiers that are supplemented by instantiation techniques [12] when quantifiers are present.
Producing and checking proofs for quantifier instantiation is generally well understood and
does not pose issues.

2.1. Linear arithmetic Proofs

The workhorse of linear arithmetic solving in SMT solvers is an adapted version of the simplex
algorithm [13], which is tailored for incremental reasoning by enabling fast backtracking as
well as efficient theory propagation'. We first discuss reasoning only for reals and afterwards
the challenges involving integers.

The simplex algorithm will determine the satisfiability of a conjunction of theory atoms
AV Zj ¢i,j X ™ ¢ for real constants ¢; j, real variables X;, and relations ><;€ {<, <}. The
Farkas lemma shows that if this conjunction is unsatisfiable, then there exist Farkas coefficients
s; > O such that). s;(>,¢,;X;) = 0and), sic; o > 0, where > is < when any ; are
strict or < = otherwise. Moreover, the simplex algorithm can be instrumented to compute these
coefficients for unsatisfiable queries, with minimal overhead. Thus, solvers can compute Farkas
coefficients during solving and provide them when proofs for the unsatisfiability of a given
conjunction of inequalities is requested, which is the case to state the validity of the theory
lemma produced by the solver, which corresponds to the negation of this conjunction of literals.
A proof checker then can use the coefficients to reduce the respective linear combination to false
and thus prove the validity of its negation, the theory lemma. In the Alethe proof format for
SMT solvers [14], the proof rule for this justification has its semantics defined via the algorithm
to reduce the linear combination to false [15, Sec 5.4, Rule 9].

In cvc5, we have instrumented the solver to provide real linear arithmetic proofs in a more
fine-grained manner. This is motivated to facilitate the algorithm that must be applied during
proof checking to justify the reduction of the linear combination to false. We have instrumented
cves to leverage the Farkas lemma by allowing bounds) ; Ci,jXj D ¢ to be scaled by
constants and also summed (the comparator for the sum is strict if and only any summand’s
comparator is). The Farkas coeflicients give a linear combination of bounds that can be shown
to be equivalent to false via simple theory rewriting rather than a more complex algorithm, as
above, which suffices to show the unsatisfiability of the conjunction. For example, x < —1 and
—x <1lsumtoz —x < 1 — 1, which rewrites to false.

Some SMT solvers, such as Z3 [16], do not provide the coefficients needed to efficiently
check the validity of theory lemmas produced by the linear real arithmetic solver. This puts a
considerable burden in proof checkers for Z3 proofs involving this theory. For example, Schurr
et al. [17] have shown that when checking SMT proofs for linear real arithmetic, without the
coefficients, in the interactive theorem prover Isabelle/HOL (which uses the linarith tactic to
do so, via the Sledghammer tool [7]), most of the time is spent searching for the coefficients,
which can lead to proof checking failures due to incompleteness of the procedure as well as to

"Theory propagation, i.e., for a theory solver to eagerly communicate to the SAT solver that a given theory literal
is valid in the current context of asserted literals, is not shown in Figure 1. This is because theory propagation
is handled in the same manner as theory lemmas for producing proofs: when a justification for the literal being
propagated is needed, the respective theory solver produces a theory lemma for it, together with a proof.

running out of resources.

2.1.1. Challenges with integer reasoning

Integer reasoning in SMT solvers also generally leverages the simplex method, but requires
branching and bounding on integer variables before it can be applied with the assumption that
the integer variables are real ones. For example [15, Sec. 4.3], if x is an integer, to reason with
the inequality 2z < 3 we can infer x < 1. This can also be justified with Farkas reasoning,
showing the validity of the clause ~(z < 1) V 2z < 3 with coefficients 1 and ! /. Bound
tightening requires further proof support. It suffices to add proof rules for tightening strict and
loose bounds. From a strict bound on integer term i: i.e., ¢ < ¢, one can deduce that ¢ is at most
the greatest integer less than ¢. From ¢ < ¢, one deduces i < |c|.

Instrumenting solvers to produce the justification for the integer reasoning they provide can
still be challenging, however. For example, the veriT solver often produces no justifications
for the integer reasoning it applies, and cvc5 also fails to do so in some cases [18]. Similarly to
the challenge described for Z3 above, it falls to proof checkers to handle these coarse-grained
proof steps. For example, in SMTCoq [6], a tool for reconstructing SMT proofs within the
interactive theorem prover Coq, arithmetic reasoning is handled via the microomega tactic?,
which provides a procedure complete for linear integer and real arithmetic but incomplete for
non-linear arithmetic. Therefore it is a full-fledged procedure that has higher complexity than
what would be needed for checking fine-grained proof steps. In Isabelle/HOL, the linarith tactic,
for automating arithmetic reasoning when search is needed, is more limited and can only find
integer coefficients and always fails if strengthening is required.

In CARcARA [18], a proof checker for the Alethe format, we have mitigated these issues
by elaborating coarse-grained proof steps into fine-grained ones. We use cvc5 to produce
fine-grained proofs, with simple steps for bound tightening and Farkas with coefficients, for
coarse-grained linear arithmetic steps. A case study is made with coarse steps produced by
the veriT solver for integer reasoning, and the overwhelming majority of these steps can be
successfully converted to fine-grained proofs via cvc5. This approach can be specially impactful
when considering the integration with interactive theorem provers of solvers that produce
coarse-grained linear arithmetic proofs, such as veriT for integer reasoning and Z3 in general.

2.2. Non-Linear Arithmetic Proofs

SMT solvers adopt different solutions to solve non-linear arithmetic problems. For example,
the MathSAT solver uses incremental linearization [1], in a abstraction-refinement loop with
the linear solver, to handle non-linear arithmetic. In Z3 and Yices [19], a complete procedure
based on cylindrical algebraic decomposition (CAD) is employed. In cvc5, we use incremental
linearization and cylindrical algebraic coverings [20], a variation of CAD better suited for SMT
solving. They are combined so that the incomplete procedure can be supplemented by the
complete one [21].

*https://coq.inria.fr/refman/addendum/micromega.html

https://coq.inria.fr/refman/addendum/micromega.html

2.2.1. Proofs for incremental linearization

To produce proofs for the incremental linearization procedure it is necessary to capture with
proof rules how lemmas are generated to refine wrong models produced by the linear solver.
For example [21, Sec. 2],z -y > 0 Az > 1 Ay < 0 is handled by the linear solver with x - y
being abstracted as a variable. A possible model found by the linear solver has z — 2, y — —1,
and z - y — 1. The refinement loop then generates the lemmax > 0Ay <0 — 2z -y <0
to rule out this wrong solution. This lemma is an instance of this proof rule, which must be
instantiated in a proof:

_|f1fk’7m
(fl/\-"/\fk)—>m<>0

where the “— | f1 ... fi, m” notation means that this rule takes no premises and has fi ... fj
and m as arguments, where the former are variables compared to zero (less, greater or not
equal), and m is a monomial from these variables, with ¢ being the comparison (less or equal)
that results from the signs of the variables. Moreover, all variables with even exponent in m
should be given as not equal to zero while all variables with odd exponent in m should be
given as less or greater than zero. Another challenge regarding incremental linearization is that
these proof rules must be reflected in the proof checkers. For example, in our work-in-progress
integration between cvc5 and the Lean interactive theorem prover [22], proving the correctness
of this rule and defining a reconstruction procedure for it requires 250 lines of Lean code, while
borrowing heavily from Lean’s mathematical library, Mathlib.

Since the incremental linearization technique uses multiple lemma schemas in the refinement
loop, all of them must be instrumented to produce proofs to capture the reasoning of this tech-
nique. While this is relatively simple for some lemmas, which can be proven via propositional
and basic arithmetic rules rather than dedicated proof rules, some, such as the one above and
the tangent plane lemma®, need involved proof rules. It is still work in progress in cvc5 to
produce proofs for all the lemma schemas used in the incremental linearization procedure, let
alone to reflect them in proof checkers.

2.2.2. Proofs for cylindrical algebraic coverings

Proofs for the infeasible subsets generated by cylindrical algebraic coverings are much more
complex, even though they are more accessible than for regular CAD-based theory solvers [23].
To prove a conflict in regular CAD it is necessary to show that each considered candidate
solution fails, and that the list of candidate solutions is indeed exhaustive to cover the whole
real space. This argument is all but trivial to check. Proofs for cylindrical algebraic coverings on
the other hand can be built in a constructive manner via rules that successively exclude parts of
the search space, as well as compose these parts, providing a stratified argument as a tree-like
proof.

In cve5 we have an initial proof calculus based on the above idea. The calculus consists
of two rules for excluding an interval in some dimension: one based on an assertion and a

’See the ARITH_MULT_TANGENT rule in https://cvc5.github.io/docs/latest/proofs/proof_rules.html

https://cvc5.github.io/docs/latest/proofs/proof_rules.html

partial assignment, and the other one based on a full covering of the next dimension. They
are combined and essentially follow the computation of the solver (pruned from unneeded
branches). Constructing the actual proof rule applications is complicated by the fact that the
premise of a subtree, i.e., the description of the interval that is excluded, is only known when the
subtree is closed. We thus generate proofs lazily to manage the construction of a tree-shaped
proof and the issue of lazy premises.

The cylindrical algebraic covering proofs are still coarse-grained proofs, with their proof
checking not being inherently simpler than solving. Therefore, currently only marginal gains
can be expected from the cve5 proofs versus not providing any details at all. In particular, the
second proof rule that lifts a covering to an interval in a lower dimension rests on a significant
portion of CAD-related theory. The proper formalization of CAD theory and its foundational
algorithms in interactive theorem provers is a significant challenge in this respect and subject
of past and future research [24, 25].

As in the case of linear arithmetic proofs where solvers give no details, for non-linear
arithmetic one can also rely on powerful tactics in interactive theorem provers to attempt to
check these steps, until more fine-grained steps are not produced by the solvers. Recent work
by Kosaian et al. [9] has formalized in Isabelle/HOL a complete procedure for non-linear real
arithmetic? that could help such an integration.

3. Summary

Much work has been done for instrumenting SMT solvers to produce proofs for arithmetic
reasoning as well as to to check these proofs in ad-hoc tools, verified checkers or in interactive
theorem provers. However, there are still multiple challenges to be addressed, as shown in the
previous sections, specially as SMT solvers are extended to employ more advanced reasoning
techniques from the computer algebra community. Combining efforts from the satisfiability
checking and the symbolic computation communities will be fundamental to better address
these challenges and allow for more trustworthy SMT solvers.

References

[1] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, R. Sebastiani, Satisfiability Modulo Transcen-
dental Functions via Incremental Linearization, in: L. de Moura (Ed.), Proc. Conference
on Automated Deduction (CADE), volume 10395 of Lecture Notes in Computer Science,
Springer, 2017, pp. 95-113. d0i:10.1007/978-3-319-63046-5.

[2] H. Barbosa, J. C. Blanchette, M. Fleury, P. Fontaine, Scalable Fine-Grained Proofs for
Formula Processing, Journal of Automated Reasoning 64 (2020) 485-510. doi:10.1007/
s10817-018-09502-y.

[3] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Notzli, A. Ozdemir,
M. Preiner, A. Viswanathan, S. Viteri, Y. Zohar, C. Tinelli, C. W. Barrett, Flexible Proof

*It is the first complete multivariate quantifier elimination algorithm formalized in Isabelle/HOL, whereas univariate
or incomplete multivariate ones, which are considerably simpler, already existed.

http://dx.doi.org/10.1007/978-3-319-63046-5
http://dx.doi.org/10.1007/s10817-018-09502-y
http://dx.doi.org/10.1007/s10817-018-09502-y

(5]

(7]
(8]

[12]

[13]

[14]

[15]

[16]

Production in an Industrial-Strength SMT Solver, in: J. Blanchette, L. Kovacs, D. Pat-
tinson (Eds.), International Joint Conference on Automated Reasoning (IJCAR), volume
13385 of Lecture Notes in Computer Science, Springer, 2022, pp. 15-35. doi:10.1007/
978-3-031-10769-6_3.

H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,
M. Mohamed, A. Niemetz, A. Notzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng,
C. Tinelli, Y. Zohar, cvc5: A Versatile and Industrial-Strength SMT Solver, in: D. Fisman,
G. Rosu (Eds.), TACAS, Part I, volume 13243 of Lecture Notes in Computer Science, Springer,
2022, pp. 415-442. doi:10.1007/978-3-030-99524-9 24,

J. Hoenicke, T. Schindler, A Simple Proof Format for SMT, in: D. Déharbe, A. E. J. Hyvérinen
(Eds.), International Workshop on Satisfiability Modulo Theories (SMT), volume 3185 of
CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp. 54-70. URL: http://ceur-ws.org/
Vol-3185/paper9527.pdf.

B. Ekici, A. Mebsout, C. Tinelli, C. Keller, G. Katz, A. Reynolds, C. W. Barrett, SMTCoq: A
Plug-In for Integrating SMT Solvers into Coq, in: R. Majumdar, V. Kuncak (Eds.), Computer
Aided Verification (CAV), volume 10427 of Lecture Notes in Computer Science, Springer,
2017, pp. 126-133. d0i:10.1007/978-3-319-63390-9_7.

J. C. Blanchette, S. B6hme, L. C. Paulson, Extending Sledgehammer with SMT Solvers,
Journal of Automated Reasoning 51 (2013) 109-128. doi:10.1007/s10817-013-9278-5.
S.Kan, A. W. Lin, P. Riimmer, M. Schrader, CertiStr: a certified string solver, in: A. Popescu,
S. Zdancewic (Eds.), Certified Programs and Proofs (CPP), ACM, 2022, pp. 210-224. doi:10.
1145/3497775.3503691.

K.Kosaian, Y. K. Tan, A. Platzer, A First Complete Algorithm for Real Quantifier Elimination
in Isabelle/HOL, in: R. Krebbers, D. Traytel, B. Pientka, S. Zdancewic (Eds.), Certified
Programs and Proofs (CPP), ACM, 2023, pp. 211-224. d0i:10.1145/3573105.3575672.
R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT Modulo Theories: From an
Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T), J. ACM 53 (2006)
937-977. d0i:10.1145/1217856.1217859.

A. Notzli, H. Barbosa, A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, C. Tinelli,
Reconstructing Fine-Grained Proofs of Rewrites Using a Domain-Specific Language, in:
A. Griggio, N. Rungta (Eds.), Formal Methods In Computer-Aided Design (FMCAD), IEEE,
2022, pp. 65-74. d0i:10.34727/2022/isbn.978-3-85448-053-2_12.

A. Reynolds, H. Barbosa, P. Fontaine, Revisiting Enumerative Instantiation, in: D. Beyer,
M. Huisman (Eds.), TACAS, Part II, volume 10806 of Lecture Notes in Computer Science,
Springer, 2018, pp. 112-131. d0i:10.1007/978-3-319-89963-3_7.

B. Dutertre, L. de Moura, A Fast Linear-Arithmetic Solver for DPLL(T), in: T. Ball, R. B.
Jones (Eds.), Computer Aided Verification (CAV), volume 4144 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2006, pp. 81-94. doi:10.1007/11817963_11.

H. Schurr, M. Fleury, H. Barbosa, P. Fontaine, Alethe: Towards a Generic SMT Proof Format
(extended abstract), CoRR abs/2107.02354 (2021). URL: https://arxiv.org/abs/2107.02354.
arXiv:2107.02354, in Workshop on Proof eXchange for Theorem Proving (PxTP).
The Alethe Proof Format: A Speculative Specification and Reference, https://verit.loria.fr/
documentation/alethe-spec.pdf, Oct 2022.

L. M. de Moura, N. Bjgrner, Z3: An Efficient SMT Solver, in: C. R. Ramakrishnan, J. Rehof

http://dx.doi.org/10.1007/978-3-031-10769-6_3
http://dx.doi.org/10.1007/978-3-031-10769-6_3
http://dx.doi.org/10.1007/978-3-030-99524-9_24
http://ceur-ws.org/Vol-3185/paper9527.pdf
http://ceur-ws.org/Vol-3185/paper9527.pdf
http://dx.doi.org/10.1007/978-3-319-63390-9_7
http://dx.doi.org/10.1007/s10817-013-9278-5
http://dx.doi.org/10.1145/3497775.3503691
http://dx.doi.org/10.1145/3497775.3503691
http://dx.doi.org/10.1145/3573105.3575672
http://dx.doi.org/10.1145/1217856.1217859
http://dx.doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
http://dx.doi.org/10.1007/978-3-319-89963-3_7
http://dx.doi.org/10.1007/11817963_11
https://arxiv.org/abs/2107.02354
http://arxiv.org/abs/2107.02354
https://verit.loria.fr/documentation/alethe-spec.pdf
https://verit.loria.fr/documentation/alethe-spec.pdf

[17]

[19]

[21]

(Eds.), TACAS, volume 4963 of Lecture Notes in Computer Science, Springer, 2008, pp.
337-340. d0i:10.1007/978-3-540-78800-3_24.

H. Schurr, M. Fleury, M. Desharnais, Reliable Reconstruction of Fine-grained Proofs
in a Proof Assistant, in: A. Platzer, G. Sutcliffe (Eds.), Proc. Conference on Automated
Deduction (CADE), volume 12699 of Lecture Notes in Computer Science, Springer, 2021, pp.
450-467. d0i:10.1007/978-3-030-79876-5_26.

B. Andreotti, H. Lachnitt, H. Barbosa, Carcara: An Efficient Proof Checker and Elaborator
for SMT Proofs in the Alethe Format, in: S. Sankaranarayanan, N. Sharygina (Eds.), TACAS,
Part I, volume 13993 of Lecture Notes in Computer Science, Springer, 2023, pp. 367-386.
doi:10.1007/978-3-031-30823-9_19.

D. Jovanovié, L. de Moura, Solving Non-linear Arithmetic, in: B. Gramlich, D. Miller, U. Sat-
tler (Eds.), International Joint Conference on Automated Reasoning (IJCAR), volume 7364 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 339-354. URL: http:
//dx.doi.org/10.1007/978-3-642-31365-3_27. doi:10.1007/978-3-642-31365-3_27.

E. Abraham, J. H. Davenport, M. England, G. Kremer, Deciding the consistency of non-
linear real arithmetic constraints with a conflict driven search using cylindrical algebraic
coverings, J. Log. Algebraic Methods Program. 119 (2021) 100633. do0i:10.1016/j . jlamp.
2020.100633.

G. Kremer, A. Reynolds, C. W. Barrett, C. Tinelli, Cooperating Techniques for Solving
Nonlinear Real Arithmetic in the cve5 SMT Solver (System Description), in: J. Blanchette,
L. Kovécs, D. Pattinson (Eds.), International Joint Conference on Automated Reasoning
(UCAR), volume 13385 of Lecture Notes in Computer Science, Springer, 2022, pp. 95-105.
d0i:10.1007/978-3-031-10769-6_7.

L. de Moura, S. Ullrich, The Lean 4 Theorem Prover and Programming Language, in:
A. Platzer, G. Sutcliffe (Eds.), Proc. Conference on Automated Deduction (CADE), volume
12699 of Lecture Notes in Computer Science, Springer, 2021, pp. 625-635. doi:10.1007/
978-3-030-79876-5_37.

E. Abraham, J. H. Davenport, M. England, G. Kremer, Proving UNSAT in SMT: the case of
quantifier free non-linear real arithmetic, in: M. Suda, S. Winkler (Eds.), Proceedings of
ARCADE 2021, 2021, pp. 1-5. URL: https://arxiv.org/abs/2108.05320.

A. Mahboubi, Implementing the cylindrical algebraic decomposition within the Coq
system, Mathematical Structures in Computer Science 17 (2007) 99-127. doi:10.1017/
S096012950600586X.

S.J. C.Joosten, R. Thiemann, A. Yamada, A Verified Implementation of Algebraic Num-
bers in Isabelle/HOL, Journal of Automated Reasoning 64 (2020) 363-389. doi:10.1007/
s10817-018-09504-w.

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-030-79876-5_26
http://dx.doi.org/10.1007/978-3-031-30823-9_19
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1016/j.jlamp.2020.100633
http://dx.doi.org/10.1016/j.jlamp.2020.100633
http://dx.doi.org/10.1007/978-3-031-10769-6_7
http://dx.doi.org/10.1007/978-3-030-79876-5_37
http://dx.doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/2108.05320
http://dx.doi.org/10.1017/S096012950600586X
http://dx.doi.org/10.1017/S096012950600586X
http://dx.doi.org/10.1007/s10817-018-09504-w
http://dx.doi.org/10.1007/s10817-018-09504-w

	1 Introduction
	2 Proof production in SMT solvers
	2.1 Linear arithmetic Proofs
	2.1.1 Challenges with integer reasoning

	2.2 Non-Linear Arithmetic Proofs
	2.2.1 Proofs for incremental linearization
	2.2.2 Proofs for cylindrical algebraic coverings

	3 Summary

