
Challenges in SMT Proof Production and Checking for
Arithmetic Reasoning
Haniel Barbosa

1

1Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract
Satisfiability Modulo Theories (SMT) solvers are widely used as backbones of formal methods tools

in a variety of applications, often safety-critical ones. These tools rely on the solver’s correctness to

guarantee the validity of their results. Producing and checking proofs is the de facto standard to ensure

the correctness of SMT solvers independently from implementations, which are often prohibitively

difficult to verify. Arithmetic reasoning is one of the foundations of SMT reasoning, and therefore it

is essential to support proof production and checking for it. In this extended abstract, to accompany

a keynote talk at the 2023 SC-Square Workshop, we survey recent work (both the author’s and from

the literature) and discuss challenges on the production and checking of proofs from SMT solvers for

arithmetic reasoning.

Keywords
Satisfiability Modulo Theories, Symbolic Computation, Proof Production, Proof Checking

1. Introduction

State-of-the-art SMT solvers, in order to optimize performance, generally have large and complex

codebases written in system languages. This makes it hard to guarantee that the solver results

are not compromised by implementation issues, which can happen despite the best efforts of

developers. To increase trust, a possible solution is to formally verify or to qualify the solvers.

However, these approaches are costly and once accomplished tend to “freeze” the systems, since

changes require a new verification or qualification process. Moreover, the sheer complexity of

the task frequently leads to compromises, with systems being less performant than the state of

the art, thus hindering their usability.

An alternative is to make confidence in the results independent from the implementation via

machine-checkable certificates of the correctness of these results. For SMT solvers, certificates

are models, for satisfiable results, and proofs for unsatisfiable results. While satisfiable results

generally denote a desired condition is not valid, unsatisfiable results ensure it is, which

significantly increases the importance of proofs. But while model production is well established

in state-of-the-art SMT solving (although in the presence of, for example, transcendental

functions, there are challenges [1]), producing proofs is not.

8th International Workshop on Satisfiability Checking and Symbolic Computation, July 28, 2023, Tromsø, Norway,
Collocated with ISSAC 2023
$ hbarbosa@dcc.ufmg.br (H. Barbosa)

� http://hanielbarbosa.com/ (H. Barbosa)

� 0000-0003-0188-2300 (H. Barbosa)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:hbarbosa@dcc.ufmg.br
http://hanielbarbosa.com/
https://orcid.org/0000-0003-0188-2300
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


The main challenge for producing proofs is to justify the combination of heterogeneous,

theory-specific algorithms used by solvers to derive unsatisfiability, while keeping the solver

performant and providing enough details to allow scalable proof checking, i.e., checking that

is fundamentally simpler than solving. We have tackled this issue in previous work [2, 3] and

nowadays the cvc5 SMT solver [4] is a state-of-the-art solver that can effectively produce proofs

for significant parts of their reasoning, without sacrificing performance too much.

Once proofs are produced, the challenge is to check they are correct. Proof checkers are given

the proofs produced by the solvers and validate whether the steps in the proof are correct with

relation to the proof calculus of which the proof is an instance. To maximize trustworthiness,

the proof checker should be small and simple (ideally, even formally verified). Alternatively,

the proof can be embedded in a highly trusted system such as a skeptical interactive theorem

prover. The SMT community is increasingly embracing this approach, with proof production

becoming a major focus in recent years [3, 5].

When considering interactive theorem provers or formally verified checkers as the targets of

SMT proofs, the difficulty is to embed in these systems the formal calculus representing the

proofs, which requires proving this calculus correct with relation to the logic of these systems.

This task is already complex for the overall reasoning performed by SMT solvers [6, 7], but

even more so for the formal calculi used when solving for some theories, such as strings [8]

and, specially, non-linear arithmetic [9].

In this paper we discuss the state of the art and current challenges in proof production and

proof checking for SMT solvers, in particular for their arithmetic reasoning.

2. Proof production in SMT solvers

Recently [3] we introduced a flexible proof-production architecture for SMT solvers, which is

shown in Figure 1 (from [3]). We summarize this architecture below, but full details can be seen

in [3].

The proof architecture is intertwined with the CDCL(𝒯 ) architecture [10], the most common

architecture of SMT solvers. This architecture for producing proofs emphasizes modularity,

given the highly modular design of SMT solvers. Proofs are produced and stored by each solving

component, which also guarantee they follow the structure for proofs of that component, as

described below. Once the proofs need to be combined, a post-processor does so guaranteeing

that they are compatible.

The modules in Figure 1 are used to solve an input formula 𝜙 in the following manner:

the pre-processor receives 𝜙 and simplifies it in a variety of ways into formulas 𝜑1, . . . , 𝜑𝑛.

For each 𝜑𝑖, the pre-processor stores a proof 𝑃 : 𝜙 → 𝜑𝑖 justifying its derivation from 𝜙.

The propositional engine receives 𝜑1, . . . , 𝜑𝑛 and clausifies them into 𝐶1 ∧ · · · ∧ 𝐶𝑙. A proof

𝑃 : 𝜓 → 𝐶𝑖 is stored for each clause𝐶𝑖. Note that several clauses may derive from each formula.

Corresponding propositional clauses 𝐶p
1 , . . . , 𝐶

p
𝑙 , where first-order atoms are abstracted as

Boolean variables, are sent to the SAT solver, which checks whether their conjunction is

satisfiable. The propositional engine and the theory engine work in a loop where the SAT solver

asserts literals, which witness the satisfiability of 𝐶p
1 , . . . , 𝐶

p
𝑙 , and the theory engine checks

their satisfiability modulo a combination of theories 𝑇 . If the literals are 𝑇 -unsatisfiable, a lemma



Pre-processor 𝜙

Propositional Engine

Clausifier

SAT Solver

Post-processor

𝐶p
1 ... 𝐶

p
𝑚

𝑃 : 𝐶⃗ → ⊥

𝑃 : 𝜓1 → 𝐶1

...

𝑃 : 𝜓𝑚 → 𝐶𝑚

𝜑1 ... 𝜑𝑛

Theory Engine

Theory Combination

𝑇1 𝑇2

𝑃 : 𝐿1 𝐿1 𝐿2 𝑃 : 𝐿2

...

𝑇𝑘

𝐿𝑘 𝑃 : 𝐿𝑘

𝐿

𝑃 : 𝐿

Asserted Literals

SMT Proof Post-processor 𝑃 : 𝜙→ ⊥

⊥𝑃 : 𝜑⃗→ ⊥

𝑃 : 𝜙→ 𝜑1

...

𝑃 : 𝜙→ 𝜑𝑛

Figure 1: Flexible proof-production architecture for CDCL(𝒯 )-based SMT solvers. In the above, 𝜓𝑖 ∈
{𝜑⃗, 𝐿⃗} for each 𝑖, with 𝜓𝑖 not necessarily distinct from 𝜓𝑖+1.

𝐿 is sent to the propositional engine, together with a proof 𝑃 : 𝐿 of its 𝑇 -validity. This lemma

will force the SAT solver to search for a different way to satisfy the clausified formulas. If this is

not possible, then all the clauses 𝐶1, . . . , 𝐶𝑚 generated until then are jointly unsatisfiable, and

the SAT solver yields a proof 𝑃 : 𝐶1 ∧ · · · ∧ 𝐶𝑚 → ⊥. Note that the proof is in terms of the

first-order clauses, as are the derivation rules that conclude ⊥ from them. The propositional

abstraction does not need to be represented in the proof.

The post-processor of the propositional engine connects the SAT assumptions with the

clausifier proofs, building a proof 𝑃 : 𝜑1 ∧ · · · ∧𝜑𝑛 → ⊥. Since theory lemmas are 𝑇 -valid, the

resulting proof only has preprocessed formulas as assumptions. The final proof is built by the

SMT solver’s post-processor combining this proof with the preprocessing proofs 𝑃 : 𝜙→ 𝜑𝑖.
The resulting proof 𝑃 : 𝜙→ ⊥ justifies the 𝑇 -unsatisfiability of the input formula.

The arithmetic reasoning performed by the solver happens in the pre-processor, where

rewrite rules are used to simplify arithmetic terms occurring in the input, and in the theory

solvers, where the main arithmetic reasoning takes place. We will focus on the current state and

challenges related to arithmetic reasoning in the theory solvers, where we discuss separately

about linear (Section 2.1) and non-linear reasoning (Section 2.2), given the significant differences

between producing and checking proofs for them. The arithmetic pre-processing reasoning is

comparatively simple and less prominent, and the challenges are mostly related to the handling

of numerous rewrite rules [11], although some particular pre-processing techniques, such as

aggressive ITE elimination, can be quite challenging.

We also note that the majority of the arithmetic reasoning in SMT solvers takes place on



quantifier-free formulas, since solvers employ dedicated procedures for logic fragments without

quantifiers that are supplemented by instantiation techniques [12] when quantifiers are present.

Producing and checking proofs for quantifier instantiation is generally well understood and

does not pose issues.

2.1. Linear arithmetic Proofs

The workhorse of linear arithmetic solving in SMT solvers is an adapted version of the simplex
algorithm [13], which is tailored for incremental reasoning by enabling fast backtracking as

well as efficient theory propagation1
. We first discuss reasoning only for reals and afterwards

the challenges involving integers.

The simplex algorithm will determine the satisfiability of a conjunction of theory atoms⋀︀
𝑖

∑︀
𝑗 𝑐𝑖,𝑗𝑋𝑖 ◁▷𝑗 𝑐𝑖,0 for real constants 𝑐𝑖,𝑗 , real variables 𝑋𝑗 , and relations ◁▷𝑖∈ {≤, <}. The

Farkas lemma shows that if this conjunction is unsatisfiable, then there exist Farkas coefficients
𝑠𝑖 > 0 such that

∑︀
𝑖 𝑠𝑖(

∑︀
𝑖 𝑐𝑖,𝑗𝑋𝑗) = 0 and

∑︀
𝑖 𝑠𝑖𝑐𝑖,0 ◁▷ 0, where ◁▷ is ≤ when any ◁▷𝑗 are

strict or< |= otherwise. Moreover, the simplex algorithm can be instrumented to compute these

coefficients for unsatisfiable queries, with minimal overhead. Thus, solvers can compute Farkas

coefficients during solving and provide them when proofs for the unsatisfiability of a given

conjunction of inequalities is requested, which is the case to state the validity of the theory

lemma produced by the solver, which corresponds to the negation of this conjunction of literals.

A proof checker then can use the coefficients to reduce the respective linear combination to false

and thus prove the validity of its negation, the theory lemma. In the Alethe proof format for

SMT solvers [14], the proof rule for this justification has its semantics defined via the algorithm

to reduce the linear combination to false [15, Sec 5.4, Rule 9].

In cvc5, we have instrumented the solver to provide real linear arithmetic proofs in a more

fine-grained manner. This is motivated to facilitate the algorithm that must be applied during

proof checking to justify the reduction of the linear combination to false. We have instrumented

cvc5 to leverage the Farkas lemma by allowing bounds

∑︀
𝑗 𝑐𝑖,𝑗𝑋𝑗 ◁▷𝑖 𝑐𝑖,0 to be scaled by

constants and also summed (the comparator for the sum is strict if and only any summand’s

comparator is). The Farkas coefficients give a linear combination of bounds that can be shown

to be equivalent to false via simple theory rewriting rather than a more complex algorithm, as

above, which suffices to show the unsatisfiability of the conjunction. For example, 𝑥 < −1 and

−𝑥 ≤ 1 sum to 𝑥− 𝑥 < 1− 1, which rewrites to false.

Some SMT solvers, such as Z3 [16], do not provide the coefficients needed to efficiently

check the validity of theory lemmas produced by the linear real arithmetic solver. This puts a

considerable burden in proof checkers for Z3 proofs involving this theory. For example, Schurr

et al. [17] have shown that when checking SMT proofs for linear real arithmetic, without the

coefficients, in the interactive theorem prover Isabelle/HOL (which uses the linarith tactic to

do so, via the Sledghammer tool [7]), most of the time is spent searching for the coefficients,

which can lead to proof checking failures due to incompleteness of the procedure as well as to

1

Theory propagation, i.e., for a theory solver to eagerly communicate to the SAT solver that a given theory literal

is valid in the current context of asserted literals, is not shown in Figure 1. This is because theory propagation

is handled in the same manner as theory lemmas for producing proofs: when a justification for the literal being

propagated is needed, the respective theory solver produces a theory lemma for it, together with a proof.



running out of resources.

2.1.1. Challenges with integer reasoning

Integer reasoning in SMT solvers also generally leverages the simplex method, but requires

branching and bounding on integer variables before it can be applied with the assumption that

the integer variables are real ones. For example [15, Sec. 4.3], if 𝑥 is an integer, to reason with

the inequality 2𝑥 < 3 we can infer 𝑥 ≤ 1. This can also be justified with Farkas reasoning,

showing the validity of the clause ¬(𝑥 ≤ 1) ∨ 2𝑥 < 3 with coefficients 1 and
1/2. Bound

tightening requires further proof support. It suffices to add proof rules for tightening strict and

loose bounds. From a strict bound on integer term 𝑖: i.e., 𝑖 < 𝑐, one can deduce that 𝑖 is at most

the greatest integer less than 𝑐. From 𝑖 ≤ 𝑐, one deduces 𝑖 ≤ ⌊𝑐⌋.

Instrumenting solvers to produce the justification for the integer reasoning they provide can

still be challenging, however. For example, the veriT solver often produces no justifications

for the integer reasoning it applies, and cvc5 also fails to do so in some cases [18]. Similarly to

the challenge described for Z3 above, it falls to proof checkers to handle these coarse-grained

proof steps. For example, in SMTCoq [6], a tool for reconstructing SMT proofs within the

interactive theorem prover Coq, arithmetic reasoning is handled via the microomega tactic
2
,

which provides a procedure complete for linear integer and real arithmetic but incomplete for

non-linear arithmetic. Therefore it is a full-fledged procedure that has higher complexity than

what would be needed for checking fine-grained proof steps. In Isabelle/HOL, the linarith tactic,

for automating arithmetic reasoning when search is needed, is more limited and can only find

integer coefficients and always fails if strengthening is required.

In Carcara [18], a proof checker for the Alethe format, we have mitigated these issues

by elaborating coarse-grained proof steps into fine-grained ones. We use cvc5 to produce

fine-grained proofs, with simple steps for bound tightening and Farkas with coefficients, for

coarse-grained linear arithmetic steps. A case study is made with coarse steps produced by

the veriT solver for integer reasoning, and the overwhelming majority of these steps can be

successfully converted to fine-grained proofs via cvc5. This approach can be specially impactful

when considering the integration with interactive theorem provers of solvers that produce

coarse-grained linear arithmetic proofs, such as veriT for integer reasoning and Z3 in general.

2.2. Non-Linear Arithmetic Proofs

SMT solvers adopt different solutions to solve non-linear arithmetic problems. For example,

the MathSAT solver uses incremental linearization [1], in a abstraction-refinement loop with

the linear solver, to handle non-linear arithmetic. In Z3 and Yices [19], a complete procedure

based on cylindrical algebraic decomposition (CAD) is employed. In cvc5, we use incremental

linearization and cylindrical algebraic coverings [20], a variation of CAD better suited for SMT

solving. They are combined so that the incomplete procedure can be supplemented by the

complete one [21].

2

https://coq.inria.fr/refman/addendum/micromega.html

https://coq.inria.fr/refman/addendum/micromega.html


2.2.1. Proofs for incremental linearization

To produce proofs for the incremental linearization procedure it is necessary to capture with

proof rules how lemmas are generated to refine wrong models produced by the linear solver.

For example [21, Sec. 2], 𝑥 · 𝑦 > 0 ∧ 𝑥 > 1 ∧ 𝑦 < 0 is handled by the linear solver with 𝑥 · 𝑦
being abstracted as a variable. A possible model found by the linear solver has 𝑥 ↦→ 2, 𝑦 ↦→ −1,

and 𝑥 · 𝑦 ↦→ 1. The refinement loop then generates the lemma 𝑥 > 0 ∧ 𝑦 < 0 → 𝑥 · 𝑦 < 0
to rule out this wrong solution. This lemma is an instance of this proof rule, which must be

instantiated in a proof:

− | 𝑓1 . . . 𝑓𝑘,𝑚
(𝑓1 ∧ · · · ∧ 𝑓𝑘) → 𝑚 ◇ 0

where the “− | 𝑓1 . . . 𝑓𝑘,𝑚” notation means that this rule takes no premises and has 𝑓1 . . . 𝑓𝑘
and 𝑚 as arguments, where the former are variables compared to zero (less, greater or not

equal), and 𝑚 is a monomial from these variables, with ◇ being the comparison (less or equal)

that results from the signs of the variables. Moreover, all variables with even exponent in 𝑚
should be given as not equal to zero while all variables with odd exponent in 𝑚 should be

given as less or greater than zero. Another challenge regarding incremental linearization is that

these proof rules must be reflected in the proof checkers. For example, in our work-in-progress

integration between cvc5 and the Lean interactive theorem prover [22], proving the correctness

of this rule and defining a reconstruction procedure for it requires 250 lines of Lean code, while

borrowing heavily from Lean’s mathematical library, Mathlib.

Since the incremental linearization technique uses multiple lemma schemas in the refinement

loop, all of them must be instrumented to produce proofs to capture the reasoning of this tech-

nique. While this is relatively simple for some lemmas, which can be proven via propositional

and basic arithmetic rules rather than dedicated proof rules, some, such as the one above and

the tangent plane lemma
3
, need involved proof rules. It is still work in progress in cvc5 to

produce proofs for all the lemma schemas used in the incremental linearization procedure, let

alone to reflect them in proof checkers.

2.2.2. Proofs for cylindrical algebraic coverings

Proofs for the infeasible subsets generated by cylindrical algebraic coverings are much more

complex, even though they are more accessible than for regular CAD-based theory solvers [23].

To prove a conflict in regular CAD it is necessary to show that each considered candidate

solution fails, and that the list of candidate solutions is indeed exhaustive to cover the whole

real space. This argument is all but trivial to check. Proofs for cylindrical algebraic coverings on

the other hand can be built in a constructive manner via rules that successively exclude parts of

the search space, as well as compose these parts, providing a stratified argument as a tree-like

proof.

In cvc5 we have an initial proof calculus based on the above idea. The calculus consists

of two rules for excluding an interval in some dimension: one based on an assertion and a

3

See the ARITH_MULT_TANGENT rule in https://cvc5.github.io/docs/latest/proofs/proof_rules.html

https://cvc5.github.io/docs/latest/proofs/proof_rules.html


partial assignment, and the other one based on a full covering of the next dimension. They

are combined and essentially follow the computation of the solver (pruned from unneeded

branches). Constructing the actual proof rule applications is complicated by the fact that the

premise of a subtree, i.e., the description of the interval that is excluded, is only known when the

subtree is closed. We thus generate proofs lazily to manage the construction of a tree-shaped

proof and the issue of lazy premises.

The cylindrical algebraic covering proofs are still coarse-grained proofs, with their proof

checking not being inherently simpler than solving. Therefore, currently only marginal gains

can be expected from the cvc5 proofs versus not providing any details at all. In particular, the

second proof rule that lifts a covering to an interval in a lower dimension rests on a significant

portion of CAD-related theory. The proper formalization of CAD theory and its foundational

algorithms in interactive theorem provers is a significant challenge in this respect and subject

of past and future research [24, 25].

As in the case of linear arithmetic proofs where solvers give no details, for non-linear

arithmetic one can also rely on powerful tactics in interactive theorem provers to attempt to

check these steps, until more fine-grained steps are not produced by the solvers. Recent work

by Kosaian et al. [9] has formalized in Isabelle/HOL a complete procedure for non-linear real

arithmetic
4

that could help such an integration.

3. Summary

Much work has been done for instrumenting SMT solvers to produce proofs for arithmetic

reasoning as well as to to check these proofs in ad-hoc tools, verified checkers or in interactive

theorem provers. However, there are still multiple challenges to be addressed, as shown in the

previous sections, specially as SMT solvers are extended to employ more advanced reasoning

techniques from the computer algebra community. Combining efforts from the satisfiability

checking and the symbolic computation communities will be fundamental to better address

these challenges and allow for more trustworthy SMT solvers.

References

[1] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, R. Sebastiani, Satisfiability Modulo Transcen-

dental Functions via Incremental Linearization, in: L. de Moura (Ed.), Proc. Conference

on Automated Deduction (CADE), volume 10395 of Lecture Notes in Computer Science,

Springer, 2017, pp. 95–113. doi:10.1007/978-3-319-63046-5.

[2] H. Barbosa, J. C. Blanchette, M. Fleury, P. Fontaine, Scalable Fine-Grained Proofs for

Formula Processing, Journal of Automated Reasoning 64 (2020) 485–510. doi:10.1007/
s10817-018-09502-y.

[3] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Nötzli, A. Ozdemir,

M. Preiner, A. Viswanathan, S. Viteri, Y. Zohar, C. Tinelli, C. W. Barrett, Flexible Proof

4

It is the first complete multivariate quantifier elimination algorithm formalized in Isabelle/HOL, whereas univariate

or incomplete multivariate ones, which are considerably simpler, already existed.

http://dx.doi.org/10.1007/978-3-319-63046-5
http://dx.doi.org/10.1007/s10817-018-09502-y
http://dx.doi.org/10.1007/s10817-018-09502-y


Production in an Industrial-Strength SMT Solver, in: J. Blanchette, L. Kovács, D. Pat-

tinson (Eds.), International Joint Conference on Automated Reasoning (IJCAR), volume

13385 of Lecture Notes in Computer Science, Springer, 2022, pp. 15–35. doi:10.1007/
978-3-031-10769-6_3.

[4] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,

M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng,

C. Tinelli, Y. Zohar, cvc5: A Versatile and Industrial-Strength SMT Solver, in: D. Fisman,

G. Rosu (Eds.), TACAS, Part I, volume 13243 of Lecture Notes in Computer Science, Springer,

2022, pp. 415–442. doi:10.1007/978-3-030-99524-9_24.

[5] J. Hoenicke, T. Schindler, A Simple Proof Format for SMT, in: D. Déharbe, A. E. J. Hyvärinen

(Eds.), International Workshop on Satisfiability Modulo Theories (SMT), volume 3185 of

CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp. 54–70. URL: http://ceur-ws.org/

Vol-3185/paper9527.pdf.

[6] B. Ekici, A. Mebsout, C. Tinelli, C. Keller, G. Katz, A. Reynolds, C. W. Barrett, SMTCoq: A

Plug-In for Integrating SMT Solvers into Coq, in: R. Majumdar, V. Kuncak (Eds.), Computer

Aided Verification (CAV), volume 10427 of Lecture Notes in Computer Science, Springer,

2017, pp. 126–133. doi:10.1007/978-3-319-63390-9_7.

[7] J. C. Blanchette, S. Böhme, L. C. Paulson, Extending Sledgehammer with SMT Solvers,

Journal of Automated Reasoning 51 (2013) 109–128. doi:10.1007/s10817-013-9278-5.

[8] S. Kan, A. W. Lin, P. Rümmer, M. Schrader, CertiStr: a certified string solver, in: A. Popescu,

S. Zdancewic (Eds.), Certified Programs and Proofs (CPP), ACM, 2022, pp. 210–224. doi:10.
1145/3497775.3503691.

[9] K. Kosaian, Y. K. Tan, A. Platzer, A First Complete Algorithm for Real Quantifier Elimination

in Isabelle/HOL, in: R. Krebbers, D. Traytel, B. Pientka, S. Zdancewic (Eds.), Certified

Programs and Proofs (CPP), ACM, 2023, pp. 211–224. doi:10.1145/3573105.3575672.

[10] R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT Modulo Theories: From an

Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T), J. ACM 53 (2006)

937–977. doi:10.1145/1217856.1217859.

[11] A. Nötzli, H. Barbosa, A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, C. Tinelli,

Reconstructing Fine-Grained Proofs of Rewrites Using a Domain-Specific Language, in:

A. Griggio, N. Rungta (Eds.), Formal Methods In Computer-Aided Design (FMCAD), IEEE,

2022, pp. 65–74. doi:10.34727/2022/isbn.978-3-85448-053-2_12.

[12] A. Reynolds, H. Barbosa, P. Fontaine, Revisiting Enumerative Instantiation, in: D. Beyer,

M. Huisman (Eds.), TACAS, Part II, volume 10806 of Lecture Notes in Computer Science,

Springer, 2018, pp. 112–131. doi:10.1007/978-3-319-89963-3_7.

[13] B. Dutertre, L. de Moura, A Fast Linear-Arithmetic Solver for DPLL(T), in: T. Ball, R. B.

Jones (Eds.), Computer Aided Verification (CAV), volume 4144 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2006, pp. 81–94. doi:10.1007/11817963_11.

[14] H. Schurr, M. Fleury, H. Barbosa, P. Fontaine, Alethe: Towards a Generic SMT Proof Format

(extended abstract), CoRR abs/2107.02354 (2021). URL: https://arxiv.org/abs/2107.02354.

arXiv:2107.02354, in Workshop on Proof eXchange for Theorem Proving (PxTP).

[15] The Alethe Proof Format: A Speculative Specification and Reference, https://verit.loria.fr/

documentation/alethe-spec.pdf, Oct 2022.

[16] L. M. de Moura, N. Bjørner, Z3: An Efficient SMT Solver, in: C. R. Ramakrishnan, J. Rehof

http://dx.doi.org/10.1007/978-3-031-10769-6_3
http://dx.doi.org/10.1007/978-3-031-10769-6_3
http://dx.doi.org/10.1007/978-3-030-99524-9_24
http://ceur-ws.org/Vol-3185/paper9527.pdf
http://ceur-ws.org/Vol-3185/paper9527.pdf
http://dx.doi.org/10.1007/978-3-319-63390-9_7
http://dx.doi.org/10.1007/s10817-013-9278-5
http://dx.doi.org/10.1145/3497775.3503691
http://dx.doi.org/10.1145/3497775.3503691
http://dx.doi.org/10.1145/3573105.3575672
http://dx.doi.org/10.1145/1217856.1217859
http://dx.doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
http://dx.doi.org/10.1007/978-3-319-89963-3_7
http://dx.doi.org/10.1007/11817963_11
https://arxiv.org/abs/2107.02354
http://arxiv.org/abs/2107.02354
https://verit.loria.fr/documentation/alethe-spec.pdf
https://verit.loria.fr/documentation/alethe-spec.pdf


(Eds.), TACAS, volume 4963 of Lecture Notes in Computer Science, Springer, 2008, pp.

337–340. doi:10.1007/978-3-540-78800-3_24.

[17] H. Schurr, M. Fleury, M. Desharnais, Reliable Reconstruction of Fine-grained Proofs

in a Proof Assistant, in: A. Platzer, G. Sutcliffe (Eds.), Proc. Conference on Automated

Deduction (CADE), volume 12699 of Lecture Notes in Computer Science, Springer, 2021, pp.

450–467. doi:10.1007/978-3-030-79876-5_26.

[18] B. Andreotti, H. Lachnitt, H. Barbosa, Carcara: An Efficient Proof Checker and Elaborator

for SMT Proofs in the Alethe Format, in: S. Sankaranarayanan, N. Sharygina (Eds.), TACAS,

Part I, volume 13993 of Lecture Notes in Computer Science, Springer, 2023, pp. 367–386.

doi:10.1007/978-3-031-30823-9_19.

[19] D. Jovanović, L. de Moura, Solving Non-linear Arithmetic, in: B. Gramlich, D. Miller, U. Sat-

tler (Eds.), International Joint Conference on Automated Reasoning (IJCAR), volume 7364 of

Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 339–354. URL: http:

//dx.doi.org/10.1007/978-3-642-31365-3_27. doi:10.1007/978-3-642-31365-3_27.

[20] E. Ábrahám, J. H. Davenport, M. England, G. Kremer, Deciding the consistency of non-

linear real arithmetic constraints with a conflict driven search using cylindrical algebraic

coverings, J. Log. Algebraic Methods Program. 119 (2021) 100633. doi:10.1016/j.jlamp.
2020.100633.

[21] G. Kremer, A. Reynolds, C. W. Barrett, C. Tinelli, Cooperating Techniques for Solving

Nonlinear Real Arithmetic in the cvc5 SMT Solver (System Description), in: J. Blanchette,

L. Kovács, D. Pattinson (Eds.), International Joint Conference on Automated Reasoning

(IJCAR), volume 13385 of Lecture Notes in Computer Science, Springer, 2022, pp. 95–105.

doi:10.1007/978-3-031-10769-6_7.

[22] L. de Moura, S. Ullrich, The Lean 4 Theorem Prover and Programming Language, in:

A. Platzer, G. Sutcliffe (Eds.), Proc. Conference on Automated Deduction (CADE), volume

12699 of Lecture Notes in Computer Science, Springer, 2021, pp. 625–635. doi:10.1007/
978-3-030-79876-5_37.

[23] E. Ábrahám, J. H. Davenport, M. England, G. Kremer, Proving UNSAT in SMT: the case of

quantifier free non-linear real arithmetic, in: M. Suda, S. Winkler (Eds.), Proceedings of

ARCADE 2021, 2021, pp. 1–5. URL: https://arxiv.org/abs/2108.05320.

[24] A. Mahboubi, Implementing the cylindrical algebraic decomposition within the Coq

system, Mathematical Structures in Computer Science 17 (2007) 99–127. doi:10.1017/
S096012950600586X.

[25] S. J. C. Joosten, R. Thiemann, A. Yamada, A Verified Implementation of Algebraic Num-

bers in Isabelle/HOL, Journal of Automated Reasoning 64 (2020) 363–389. doi:10.1007/
s10817-018-09504-w.

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-030-79876-5_26
http://dx.doi.org/10.1007/978-3-031-30823-9_19
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1016/j.jlamp.2020.100633
http://dx.doi.org/10.1016/j.jlamp.2020.100633
http://dx.doi.org/10.1007/978-3-031-10769-6_7
http://dx.doi.org/10.1007/978-3-030-79876-5_37
http://dx.doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/2108.05320
http://dx.doi.org/10.1017/S096012950600586X
http://dx.doi.org/10.1017/S096012950600586X
http://dx.doi.org/10.1007/s10817-018-09504-w
http://dx.doi.org/10.1007/s10817-018-09504-w

	1 Introduction
	2 Proof production in SMT solvers
	2.1 Linear arithmetic Proofs
	2.1.1 Challenges with integer reasoning

	2.2 Non-Linear Arithmetic Proofs
	2.2.1 Proofs for incremental linearization
	2.2.2 Proofs for cylindrical algebraic coverings


	3 Summary

